
Data Cleaning Part 2

Data Wrangling in R

Data Cleaning Part 2

Example of Cleaning: more complicated

For example, let’s say gender was coded as Male, M, m, Female, F,
f. Using Excel to find all of these would be a matter of filtering and
changing all by hand or using if statements.

Sometimes though, it’s not so simple. That’s where functions that
find patterns come to be very useful.
table(gender)

gender
F FeMAle FEMALE Fm M Ma mAle Male MaLe MALE Man

80 88 76 87 99 76 84 83 79 93 84
Woman

71

Example of Cleaning: more complicated
In R, you could use case_when():
#case_when way:
data_gen <-data_gen %>% mutate(gender =

case_when(gender %in% c("Male", "M", "m", "Man")
~ "Male",

TRUE ~ gender))
head(data_gen)

A tibble: 6 x 1
gender
<chr>

1 F
2 Fm
3 MaLe
4 MaLe
5 FeMAle
6 FEMALE

Oh dear! This only fixes some values! It is difficult to notice values
like "MaLe".

String functions

The stringr package

Like dplyr, the stringr package:

I Makes some things more intuitive
I Is different than base R
I Is used on forums for answers
I Has a standard format for most functions: str_

I the first argument is a string like first argument is a
data.frame in dplyr

Useful String Functions

Useful String functions from base R and stringr

I toupper(), tolower() - uppercase or lowercase your data

I str_sentence() - uppercase just the first character (in the
stringr package)

I paste() - paste strings together with a space

I paste0 - paste strings together with no space as default

I str_trim() (in the stringr package) or trimws in base
I will trim whitespace

I nchar - get the number of characters in a string

recoding with str_to_sentence()
#case_when way:
data_gen <-data_gen %>%

mutate(gender = str_to_sentence(gender)) %>%
mutate(gender =

case_when(gender %in% c("Male", "M", "m", "Man")
~ "Male",

TRUE ~ gender))
head(data_gen)

A tibble: 6 x 1
gender
<chr>

1 F
2 Fm
3 Male
4 Male
5 Female
6 Female

OK, now we are getting somewhere!

Reading in again

Now we have a chance to keep but clean these values!
ufo <-read_csv("https://sisbid.github.io/Data-Wrangling/data/ufo/ufo_data_complete.csv", col_types = cols(`duration (seconds)` = "c"))

Warning: One or more parsing issues, call `problems()` on your data frame for details,
e.g.:

dat <- vroom(...)
problems(dat)

p <- problems(ufo)
ufo_clean <- ufo %>% slice((pull(p, row))*-1)

Clean names with the clean_names() function from the
janitor package

colnames(ufo_clean)

[1] "datetime" "city" "state"
[4] "country" "shape" "duration (seconds)"
[7] "duration (hours/min)" "comments" "date posted"

[10] "latitude" "longitude"
ufo_clean <- clean_names(ufo_clean)
colnames(ufo_clean)

[1] "datetime" "city" "state"
[4] "country" "shape" "duration_seconds"
[7] "duration_hours_min" "comments" "date_posted"

[10] "latitude" "longitude"

str_detect and filter
Now let’s fix our ufo data and remove those pesky backticks in the
duration_seconds variable. First let’s find them with
str_detect.
ufo_clean %>%

filter(str_detect(
string = duration_seconds,
pattern = "`"))

A tibble: 3 x 11
datetime city state country shape durat~1 durat~2 comme~3 date_~4 latit~5
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

1 2/2/2000 19~ bouse az us <NA> 2` each a~ Drivin~ 2/16/2~ 33.932~
2 4/10/2005 2~ sant~ ca us <NA> 8` eight ~ 2 red ~ 4/16/2~ 36.974~
3 7/21/2006 1~ ibag~ <NA> <NA> circ~ 0.5` 1/2 se~ Viajab~ 10/30/~ 4.4406~
... with 1 more variable: longitude <chr>, and abbreviated variable names
1: duration_seconds, 2: duration_hours_min, 3: comments, 4: date_posted,
5: latitude

str_remove

ufo_clean <- ufo_clean %>%
mutate(duration_seconds =

str_remove(string = duration_seconds,
pattern = "`"))

Lets also mutate to be as.numeric again
ufo_clean <- ufo_clean %>%

mutate(duration_seconds = as.numeric(duration_seconds))

glimpse(ufo_clean)

Rows: 88,679
Columns: 11
$ datetime <chr> "10/10/1949 20:30", "10/10/1949 21:00", "10/10/1955~
$ city <chr> "san marcos", "lackland afb", "chester (uk/england)~
$ state <chr> "tx", "tx", NA, "tx", "hi", "tn", NA, "ct", "al", "~
$ country <chr> "us", NA, "gb", "us", "us", "us", "gb", "us", "us",~
$ shape <chr> "cylinder", "light", "circle", "circle", "light", "~
$ duration_seconds <dbl> 2700, 7200, 20, 20, 900, 300, 180, 1200, 180, 120, ~
$ duration_hours_min <chr> "45 minutes", "1-2 hrs", "20 seconds", "1/2 hour", ~
$ comments <chr> "This event took place in early fall around 1949-50~
$ date_posted <chr> "4/27/2004", "12/16/2005", "1/21/2008", "1/17/2004"~
$ latitude <chr> "29.8830556", "29.38421", "53.2", "28.9783333", "21~
$ longitude <chr> "-97.9411111", "-98.581082", "-2.916667", "-96.6458~

Paste can add things back to variables
ufo_clean %>%

mutate(duration_seconds =
paste(duration_seconds, "sec", sep = " ")) %>%

glimpse()

Rows: 88,679
Columns: 11
$ datetime <chr> "10/10/1949 20:30", "10/10/1949 21:00", "10/10/1955~
$ city <chr> "san marcos", "lackland afb", "chester (uk/england)~
$ state <chr> "tx", "tx", NA, "tx", "hi", "tn", NA, "ct", "al", "~
$ country <chr> "us", NA, "gb", "us", "us", "us", "gb", "us", "us",~
$ shape <chr> "cylinder", "light", "circle", "circle", "light", "~
$ duration_seconds <chr> "2700 sec", "7200 sec", "20 sec", "20 sec", "900 se~
$ duration_hours_min <chr> "45 minutes", "1-2 hrs", "20 seconds", "1/2 hour", ~
$ comments <chr> "This event took place in early fall around 1949-50~
$ date_posted <chr> "4/27/2004", "12/16/2005", "1/21/2008", "1/17/2004"~
$ latitude <chr> "29.8830556", "29.38421", "53.2", "28.9783333", "21~
$ longitude <chr> "-97.9411111", "-98.581082", "-2.916667", "-96.6458~

Substringing

stringr

I str_sub(x, start, end) - substrings from position start to
position end

Substringing

Examples:
str_sub("I like friesian horses", 8,12)

[1] "fries"
#123456789101112
#I like fries
str_sub(c("Site A", "Site B", "Site C"), 6,6)

[1] "A" "B" "C"

Splitting/Find/Replace and Regular Expressions

I R can do much more than find exact matches for a whole string
I Like Perl and other languages, it can use regular expressions.
I What are regular expressions?

I Ways to search for specific strings
I Can be very complicated or simple
I Highly Useful - think “Find” on steroids

A bit on Regular Expressions

I http://www.regular-expressions.info/reference.html
I They can use to match a large number of strings in one

statement
I . matches any single character
I * means repeat as many (even if 0) more times the last

character
I ? makes the last thing optional
I ˆ matches start of vector ˆa - starts with “a”
I $ matches end of vector b$ - ends with “b”

http://www.regular-expressions.info/reference.html

‘Find’ functions: stringr

str_detect, str_subset, str_replace, and str_replace_all
search for matches to argument pattern within each element of a
character vector: they differ in the format of and amount of detail
in the results.

I str_detect - returns TRUE if pattern is found
I str_subset - returns only the strings which pattern were

detected
I str_extract - returns only the pattern which were detected
I str_replace - replaces pattern with replacement the first

time
I str_replace_all - replaces pattern with replacement as

many times matched

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:
ufo_clean %>%

filter(str_detect(comments, "two aliens")) %>%
head()

A tibble: 2 x 11
datetime city state country shape durat~1 durat~2 comme~3 date_~4 latit~5
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>

1 10/14/2006 ~ yuma va us form~ 300 5 minu~ ((HOAX~ 4/27/2~ 36.615~
2 7/1/2007 23~ nort~ ct <NA> unkn~ 60 1 minu~ Witnes~ 10/19/~ 41.985~
... with 1 more variable: longitude <chr>, and abbreviated variable names
1: duration_seconds, 2: duration_hours_min, 3: comments, 4: date_posted,
5: latitude

To Take a look at comments. . . need to select it first

ufo_clean %>%
filter(str_detect(comments, "two aliens")) %>%
select(comments)

A tibble: 2 x 1
comments
<chr>

1 ((HOAX??)) two aliens appeared from a bright light to peacefully investigate~
2 Witnessed two aliens walking along baseball field fence.

‘Find’ functions: str_subset() is easier

str_subset() gives the values that match the pattern:
ufo_clean %>% pull(comments) %>%

str_subset("two aliens")

[1] "((HOAX??)) two aliens appeared from a bright light to peacefully investigate the surroundings in the woods"
[2] "Witnessed two aliens walking along baseball field fence."

Showing difference in str_extract

str_extract extracts just the matched string
ufo_clean %>%

mutate(aliens = str_extract(comments, "aliens")) %>%
count(aliens)

A tibble: 2 x 2
aliens n
<chr> <int>

1 aliens 53
2 <NA> 88626

I Look for any comment that starts with “aliens”
ufo_clean %>% pull(comments) %>%str_subset("ˆaliens")

[1] "aliens speak german???" "aliens exist" "aliens in srilanka"

Using Regular Expressions

That contains space then ship maybe with stuff in between
ufo_clean %>% pull(comments) %>%

str_subset("space.?ship") %>% head(4) # gets "spaceship" or "space ship" or...

[1] "I saw the cylinder shaped looked like a spaceship hovring above the east side of the Air Force base. Saw it for about 30 seconds and ra"
[2] "description of a spaceship spotted over Birmingham Alabama in 1967."
[3] "A space ship was descending to the ground"
[4] "On Monday october 3, 2005, I spotted two spaceships in the sky. The first spotted ship was what seemed to be a bright star, when it st"
ufo_clean %>% pull(comments) %>%

str_subset("space.ship") %>% head(4) # no "spaceship" must have character in bw

[1] "A space ship was descending to the ground"
[2] "I saw a Silver space ship rising into the early morning sky over Houston, Texas."
[3] "Saw a space ship hanging over the southern (Manzano) portion of the Sandia Mountains on evening. It was brightly lit, but not entirely."
[4] "saw space ship for 5 min! Got scared crapless!!!!!!!!!!!!!!!! happened in arizona"

str_replace()

Let’s say we wanted to make the time information more consistent.
Using case_when() would be very tedious and error-prone!

We can use str_replace() to do so.
ufo_clean %>% mutate(duration_hours_min =

str_replace(string = duration_hours_min,
pattern = "minutes",
replacement ="mins")) %>%

pull(duration_hours_min) %>%
head(8)

[1] "45 mins" "1-2 hrs" "20 seconds" "1/2 hour" "15 mins"
[6] "5 mins" "about 3 mins" "20 mins"

Separating columns
Better yet, you might notice that this data isn’t tidy- there are more
than two entries for each value - amount of time and unit. We
could separate this using separate() from the tidyr package.
ufo_clean %>% separate(duration_hours_min,

into = c("duration_amount", "duration_unit"),
sep = " ") %>%

select(duration_amount, duration_unit) %>% head()

A tibble: 6 x 2
duration_amount duration_unit
<chr> <chr>

1 45 minutes
2 1-2 hrs
3 20 seconds
4 1/2 hour
5 15 minutes
6 5 minutes

As you can see there is still plenty of cleaning to do!
ufo_clean %>% separate(date_posted,

into = c("date_posted", "time_posted"),
sep = " ") %>%

select(date_posted, time_posted) %>% head()

A tibble: 6 x 2
date_posted time_posted
<chr> <chr>

1 4/27/2004 <NA>
2 12/16/2005 <NA>
3 1/21/2008 <NA>
4 1/17/2004 <NA>
5 1/22/2004 <NA>
6 4/27/2007 <NA>

Dates and times
The [lubridate](https://lubridate.tidyverse.org/) package is
amazing for dates. Most important functions are those that look
like ymd or mdy etc. They specify how a date should be interpreted.
library(lubridate)#need to load this one!

ufo_clean <- ufo_clean %>% mutate(date_posted = mdy(date_posted))

Warning: 193 failed to parse.
head(ufo_clean)

A tibble: 6 x 11
datetime city state country shape durat~1 durat~2 comme~3 date_pos~4 latit~5
<chr> <chr> <chr> <chr> <chr> <dbl> <chr> <chr> <date> <chr>

1 10/10/19~ san ~ tx us cyli~ 2700 45 min~ This e~ 2004-04-27 29.883~
2 10/10/19~ lack~ tx <NA> light 7200 1-2 hrs 1949 L~ 2005-12-16 29.384~
3 10/10/19~ ches~ <NA> gb circ~ 20 20 sec~ Green/~ 2008-01-21 53.2
4 10/10/19~ edna tx us circ~ 20 1/2 ho~ My old~ 2004-01-17 28.978~
5 10/10/19~ kane~ hi us light 900 15 min~ AS a M~ 2004-01-22 21.418~
6 10/10/19~ bris~ tn us sphe~ 300 5 minu~ My fat~ 2007-04-27 36.595~
... with 1 more variable: longitude <chr>, and abbreviated variable names
1: duration_seconds, 2: duration_hours_min, 3: comments, 4: date_posted,
5: latitude
str_detect(string = c("abcdd", "two"), pattern = "dd")

[1] TRUE FALSE
str_subset(string = c("abcdd", "two"), pattern = "dd")

[1] "abcdd"
str_extract(string = c("abcdd", "two"), pattern = "dd")

[1] "dd" NA
str_sub(string = c("abcdd", "two"), start = 1, end = 3)

[1] "abc" "two"

https://lubridate.tidyverse.org/

Summary

I stringr package has lots of helpful functions that work on
vectors or variables in a data frame

I str_detect helps find patterns
I str_detect and filter can help you filter data based on

patterns within value
I str_extract helps extract a pattern
I str_sub extracts pieces of strings based on the position of the

the characters
I str_subset gives the values that match a pattern
I separate can separate columns into two
I ˆ indicates the start of a string
I $ indicates the end of a string
I the lubridate package is useful for dates and times

Lab

https://sisbid.github.io/Data-Wrangling/labs/data-cleaning-lab-
part2.Rmd

https://sisbid.github.io/Data-Wrangling/labs/data-cleaning-lab-part2.Rmd
https://sisbid.github.io/Data-Wrangling/labs/data-cleaning-lab-part2.Rmd

	Data Cleaning Part 2
	String functions

