# Data Wrangling in R

 $\mathcal{J}$ 

http://sisbid.github.io/Data-Wrangling/

## Course Info

Course name Data Wrangling in R

Instructors Carrie Wright and Ava Hoffman

Course website <a href="http://sisbid.github.io/Data-Wrangling/">http://sisbid.github.io/Data-Wrangling/</a>

Goals Teach you how to get and clean data

Pre-reqs Hopefully some R programming

## What we will cover in this course:

- 1) Why data wrangling is important?
- 2) Version control Git/GitHub
- 3) Importing data (and outporting)
- 4) Subsetting data
- 5) Summarizing data
- 6) Cleaning data
- 7) Reshaping data
- 8) Data merging and joining
- 9) Functional programming (efficiently applying functions)
- 10) Working with factors, strings, dates
- 11) Working with genomic data in R


# The <u>Tidvyerse</u>

Newer packages designed for data science that make R code more intuitive.



How many people feel

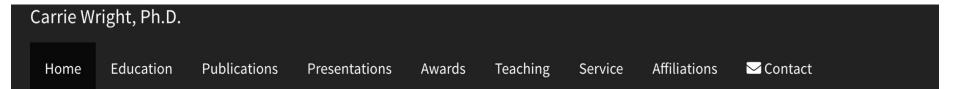
about data wrangling



# How we feel about data

wrangling






Carrie

# About us



Ava



## About

Carrie Wright is a Senior Staff Scientist at the Fred Hutchinson Cancer Research Center. Dr. Wright's work is focused on innovating ways to make data science and computational biology more accessible. She is a member of the Open Case Studies team, the Genomic Data Science Community Network (GDSCN), and the Informatics Technology for Cancer Research (ITCR) Training Network (ITN). She also currently leads the ITCR Training and Outreach Working Group.

Previously, Dr. Wright was an Assistant Scientist in the Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health (JHSPH) and a member of the Johns Hopkins Data Science Lab (DaSL).

Prior to joining the JHSPH, Dr. Wright was a Postdoctoral Fellow at the Lieber Institute for Brain Development (LIBD), where her research focused on uncovering genetic mechanisms in psychiatric disease (with a particular emphasis on non-coding RNA) through the utilization of data science tools. At LIBD, Dr. Wright co-founded the LIBD rstats club, a community designed to encourage others to learn more about R programming and statistics. Dr. Wright has also served as an instructor for the Baltimore Underground Science Space and the Johns Hopkins Center for Talented Youth.

## **Open Case Studies**

#### What is the Open Case Studies (OCS) project?

The Open Case Studies project is an educational resource that educators can use in the classroom to teach students how to effectively derive knowledge from data in real-world challenges.





ABOUT
RESEARCH
RESOURCES
FUN STUFF

# AVA HOFFMAN

BALTIMORE, USA · AVAMARIEHOFFMAN @ GMAIL.COM



I'm a data scientist and ecologist. I'm currently exploring ways to make genomics research more accessible by connecting communities to cloud-based resources. I get really excited about things at the intersection of ecology and data, like population genetics and statistical modeling in nature. Lately, I've been especially interested in how plants evolve in man-made ecosystems (cities!) and how we can link those findings to public health outcomes.

I like coding, climbing things, everything DIY, and taking stuff apart to see how it works. I'm also working to get a community upcycling collective called **Bed Roll Baltimore** going!







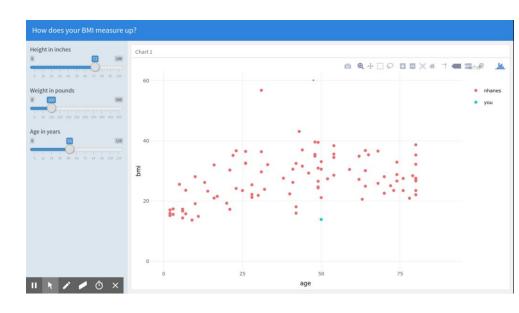


Why this class



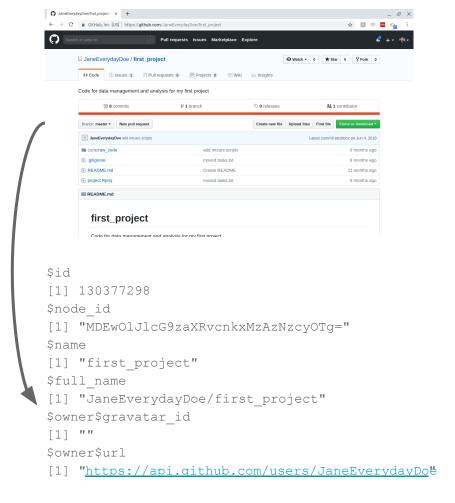
## rmarkdown

```
title: "My awesome website"
output:
    html document:
        toc: true
        toc float: true
        theme: cerulean
 This is Jeff's awesome website
![](https://media.giphy.com/media/d
rXGoWliudhKw/qiphy.gif)
```






This is Jeff's awesome website


## flexdashboard

```
title: "How does your BMI measure up?"
output: flexdashboard::flex dashboard
runtime: shiny
Inputs {.sidebar}
```{r}
library(flexdashboard); library(NHANES); library(plotly); library(dplyr)
sliderInput("height", "Height in inches",0,100,72)
sliderInput("weight", "Weight in pounds",0,500,100)
sliderInput("age", "Age in years",0,120,50)
Column
### Chart 1
```{r}
nhanes = sample n(NHANES, 100)
renderPlotly({
 df = data.frame(bmi = c(nhanes$BMI,input$weight*0.45/(input$height*0.025)^2),
                  age = c(nhanes$Age,input$age),
                 who = c(rep("nhanes",100), "you"))
  ggplotly(ggplot(df) +
             geom point(aes(x=age,y=bmi,color=who)) +
            scale x continuous(limits=c(0,90)) +
            scale y continuous(limits=c(0,60)) +
            theme minimal()
```



## httr

```
library(httr)
library(dplyr)
username = 'janeeverydaydoe'
url git = 'https://api.github.com/'
api response =
GET(url = paste0(url git, 'users/',
username, '/repos'))
content(api response)[[1]]
```

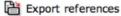


# But also...

# Genomic signatures to guide the use of chemotherapeutics

Anil Potti<sup>1</sup>,<sup>2</sup>, Holly K Dressman<sup>1</sup>,<sup>3</sup>, Andrea Bild<sup>1</sup>,<sup>3</sup>, Richard F Riedel<sup>1</sup>,<sup>2</sup>, Gina Chan<sup>4</sup>, Robyn Sayer<sup>4</sup>, Janiel Cragun<sup>4</sup>, Hope Cottrill<sup>4</sup>, Michael J Kelley<sup>2</sup>, Rebecca Petersen<sup>5</sup>, David Harpole<sup>5</sup>, Jeffrey Marks<sup>5</sup>, Andrew Berchuck<sup>1</sup>,<sup>6</sup>, Geoffrey S Ginsburg<sup>1</sup>,<sup>2</sup>, Phillip Febbo<sup>1</sup>,<sup>2</sup>,<sup>3</sup>, Johnathan Lancaster<sup>4</sup> & Joseph R Nevins<sup>1</sup>,<sup>2</sup>,<sup>3</sup>

Using in vitro drug sensitivity data coupled with Affymetrix microarray data, we developed gene expression signatures that predict sensitivity to individual chemotherapeutic drugs. Each signature was validated with response data from an independent set of cell line studies. We further show that many of these signatures can accurately predict clinical response in individuals treated with these drugs. Notably, signatures developed to predict response to individual agents, when combined, could also predict response to multidrug regimens. Finally, we integrated the chemotherapy response signatures with signatures of


#### **ARTICLE LINKS**

Supplementary info

#### **ARTICLE TOOLS**



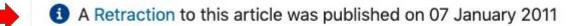






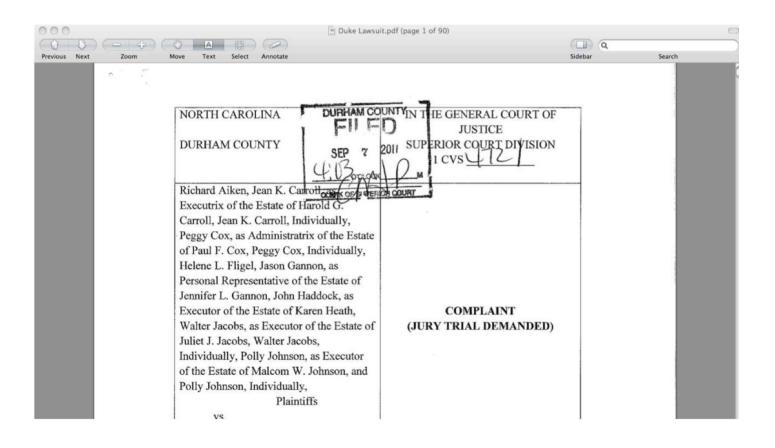


#### **SEARCH PUBMED FOR**

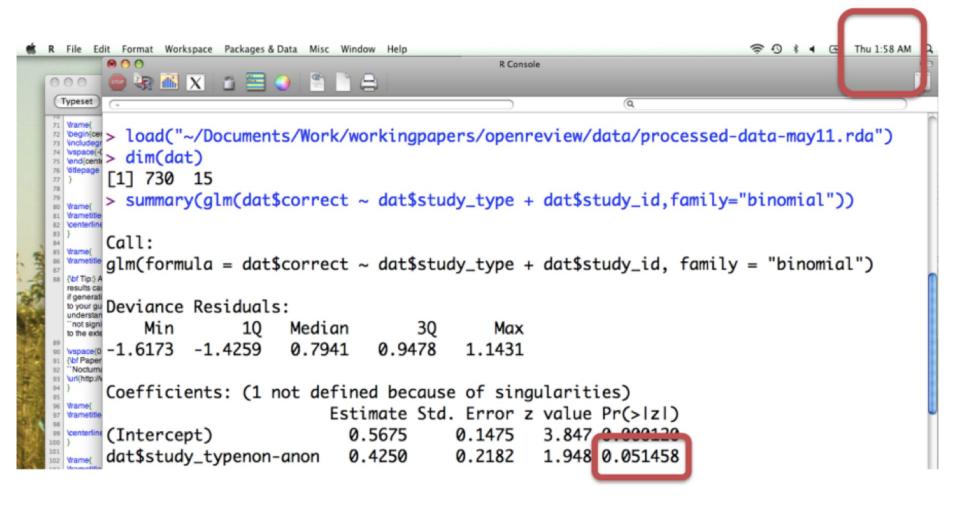

- Anil Potti
- Holly K Dressman
- Andrea Bild
- Richard F Riedel



http://www.birs.ca/events/2013/5-day-workshops/13w5083/videos/watch/201308141121-Baggerly.mp4


## Nature Medicine 12, 1294–1300 (2006) | Cite this article

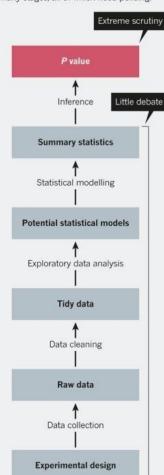
5843 Accesses | 426 Citations | 95 Altmetric | Metrics




4 Corrigendum to this article was published on 01 August 2008

A Corrigendum to this article was published on 01 November 2007




Doesn't seem that important....

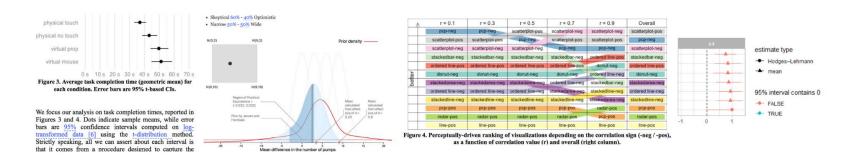




#### **DATA PIPELINE**

The design and analysis of a successful study has many stages, all of which need policing.




- Most of the attention is on the last step
- This course is about all the steps that come before
- They are <u>critical</u> for getting things rights

The garden of forking paths: Why multiple comparisons can be a problem, even when there is no "fishing expedition" or "p-hacking" and the research hypothesis was posited ahead of time\*

Andrew Gelman<sup>†</sup> and Eric Loken<sup>‡</sup>
14 Nov 2013

"I thought of a labyrinth of labyrinths, of one sinuous spreading labyrinth that would encompass the past and the future ... I felt myself to be, for an unknown period of time, an abstract perceiver of the world." — Borges (1941)

# **Explorable Multiverse Analyses**



Pierre Dragicevic (Inria), Yvonne Jansen (CNRS - Sorbonne Université), Abhraneel Sarma (University of Michigan)

Matthew Kay (University of Michigan), Fanny Chevalier (University of Toronto)

With **explorable multiverse analysis reports**, readers of research papers can explore alternative analysis options by interacting with the paper itself. This new approach to statistical reporting draws from two recent ideas: multiverse analysis, a philosophy of statistical reporting where paper authors report the outcomes of many different statistical analyses in order to show how fragile or robust their findings are; and **explorable explanations**, narratives that can be read as normal explanations but where the reader can also become active by dynamically changing some elements of the explanation.

https://explorablemultiverse.github.io/

And so we data wrangle



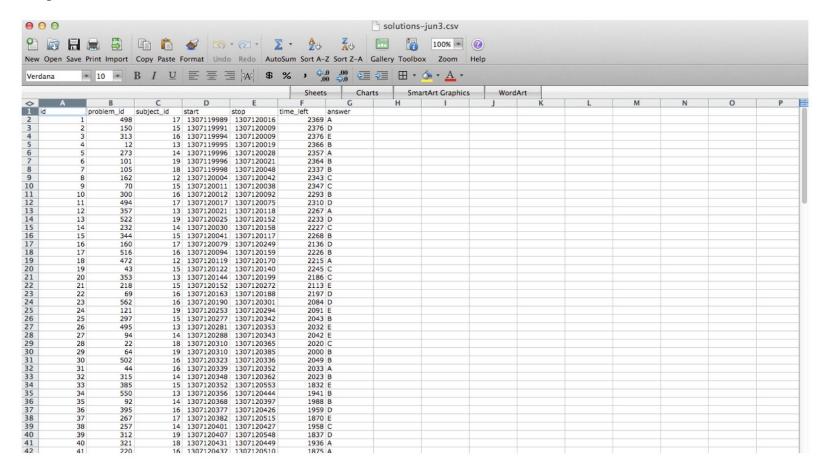








**TECHNOLOGY** 


### For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights

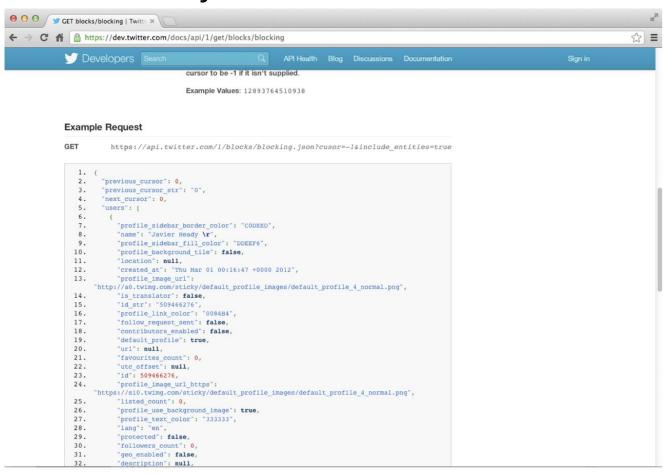
By STEVE LOHR AUG. 17, 2014





# What you wished data looked like




# What it actually looks like

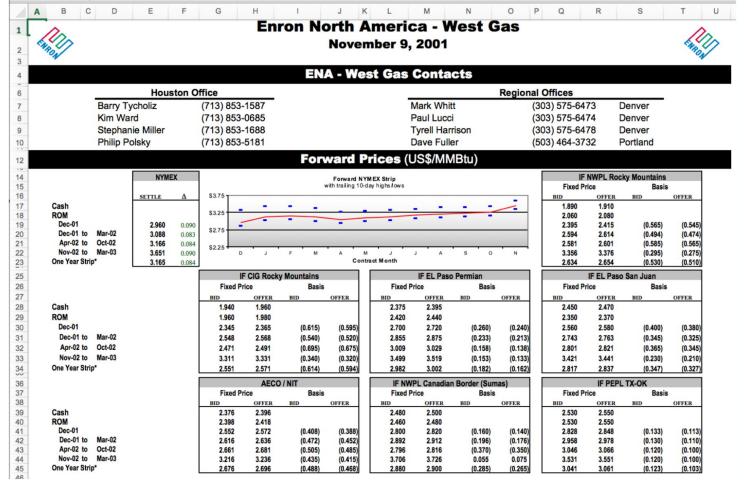
http://healthdesignchallenge.com/

```
@HWI-EAS121:4:100:1783:550#0/1
CGTTACGAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACGGATCTCGTATGCGGTCTGCTGCGTGACAAGACAGGGG
+HWI-EAS121:4:100:1783:550#0/1
aaaaa`b aa`aa`YaX]aZ`aZM^Z]YRa]YSG[[ZREQLHESDHNDDHNMEEDDMPENITKFLFEEDDDHEJQMEDDD
@HWI-EAS121:4:100:1783:1611#0/1
GGGTGGGCATTTCCACTCGCAGTATGGGTTGCCGCACGACAGGCAGCGGTCAGCCTGCGCTTTGGCCTGCGCTTCGGAAA
+HWI-EAS121:4:100:1783:1611#0/1
@HWI-EAS121:4:100:1783:322#0/1
CGTTTATGTTTTTGAATATGTCTTATCTTAACGGTTATATTTTTAGATGTTGGTCTTATTCTAACGGTCATATATTTTTCTA
+HWT-EAS121:4:100:1783:322#0/1
@HWT-EAS121:4:100:1783:1394#0/1
+HWI-EAS121:4:100:1783:1394#0/1
```[aa\b^^[]aabbb][`a_abbb`a``bbbbbabaabaaaab VZa ^__bab X`[a\HV [ ] [^ X\T VQQ
@HWI-EAS121:4:100:1783:207#0/1
+HWI-EAS121:4:100:1783:207#0/1
abba`Xa\^\\`aa]ba bba[a O a`aa`aa`a]^V]X a^YS\R \H []\ZTDUZZUSOPX]]POP\GS\WSHHD
@HWI-EAS121:4:100:1783:455#0/1
GGGTAATTCAGGGACAATGTAATGGCTGCACAAAAAAATACATCTTTCATGTTCCATTGCACCATTGACAAATACATATT
+HWI-EAS121:4:100:1783:455#0/1
```

# What it actually looks like

https://dev.twitter.com/docs/api/1/get/blocks/blocking




# What it actually looks like

|                          | ALLERGIES                                          | MEDICATION HISTOR                                                  |
|--------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| ast Updated: 01 Dec      | 2011 @ 0851                                        | Last Updated: 11 Apr 2011 @ 1737                                   |
|                          |                                                    | Medication: AMLODIPINE BESYLATE 18MG TAB                           |
| llergy Name:<br>ocation: | TRIMETHOPRIM<br>DAYT29                             | Instructions: TAKE ONE TABLET BY MOUTH TAKE ON<br>GRAPEFRUIT JUICE |
| ate Entered:<br>eaction: | 09 Mar 2011                                        | Status: Active<br>Refills Remaining: 3                             |
| llergy Type:             | DRUG                                               | Last Filled On: 20 Aug 2010                                        |
| A Drug Class:            | ANTI-INFECTIVES,OTHER                              | Initially Ordered On: 13 Aug 2010                                  |
| bserved/Historical:      | HISTORICAL                                         | Quantity: 45                                                       |
| omments:                 | The reaction to this allergy was MILD (NO SQUELAE) | Days Supply: 90<br>Pharmacy: DAYTON                                |
| llergy Name:             | TRAMADOL                                           | Prescription Number: 2718953                                       |
| ocation:                 | DAYT29                                             |                                                                    |
| ate Entered:             | 09 Mar 2011                                        | Medication: IBUPROFEN 600MG TAB                                    |
|                          | URINARY RETENTION                                  | Instructions: TAKE ONE TABLET BY MOUTH FOUR TI                     |
| 607                      | DRUG                                               | Status: Active                                                     |
| A Drug Class:            | NON-OPIOID ANALGESICS                              | Refills Remaining: 3                                               |
| bserved/Historical:      |                                                    | Last Filled On: 20 Aug 2010                                        |
| omments:                 | gradually worsening difficulty emptying bladder    | Initially Ordered On: 01 Jul 2010                                  |
|                          |                                                    | Overhitor 340                                                      |



Jenny Bryan @JennyBryan · Apr 20

I'm seeking TRUE, crazy spreadsheet stories. Happy to get the actual sheet or just a description of the crazy. Also: I can keep a secret.

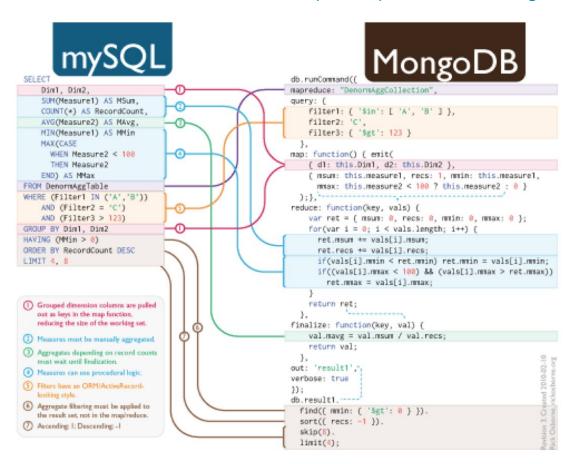


Slide from Jenny Bryan



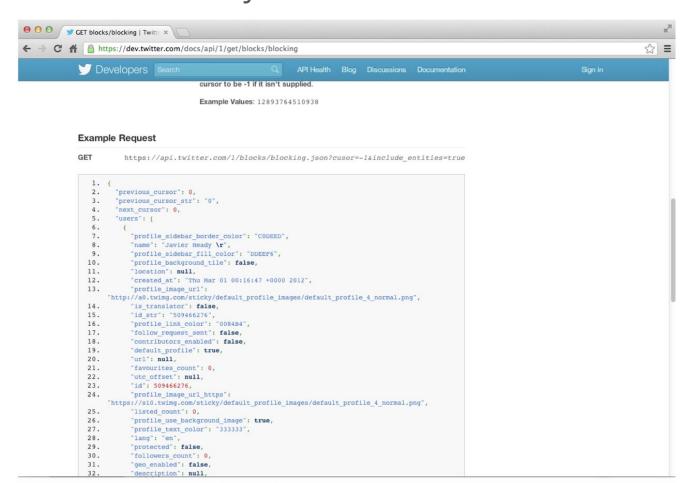
#### Today's updates on #otherpeoplesdata:




8:56 AM - 22 Oct 2018

## Where you wish data was




#### Where data actually is

https://rickosborne.org/blog/2010/02/infographic-migrating-from-sql-to-mapreduce-with-mongodb/



#### Where data actually is

https://dev.twitter.com/docs/api/1/get/blocks/blocking



Raw & processed data

**Set of items**: Sometimes called the population; the set of objects you are interested in

Variables: A measurement or characteristic of an item

Qualitative: Country of origin, sex, treatment Quantitative: Height, weight, blood pressure

# Data sharing

- 1. The raw data.
- 2. A tidy data set
- 3. A code book describing each variable and its values in the tidy data set.
- 4. An explicit and exact recipe you used to go from 1 -> 2,3

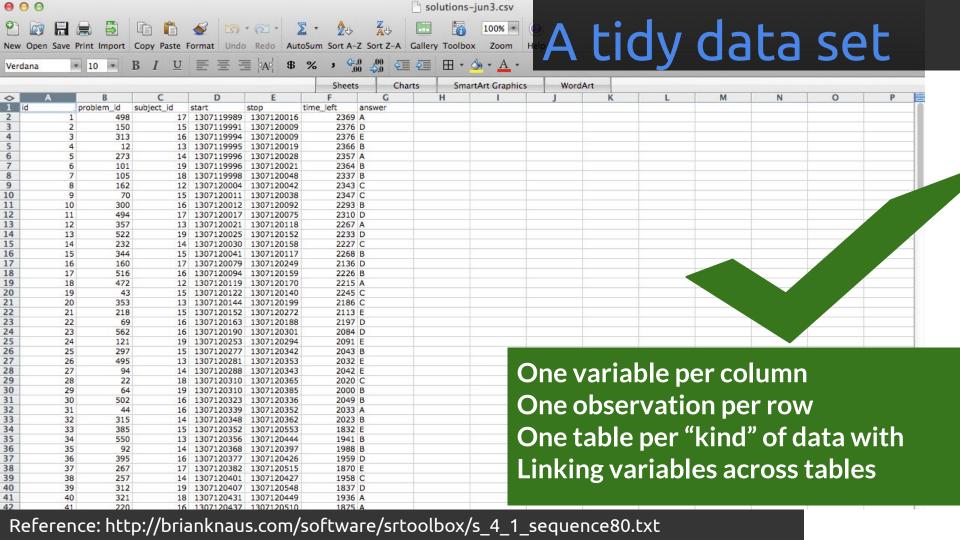


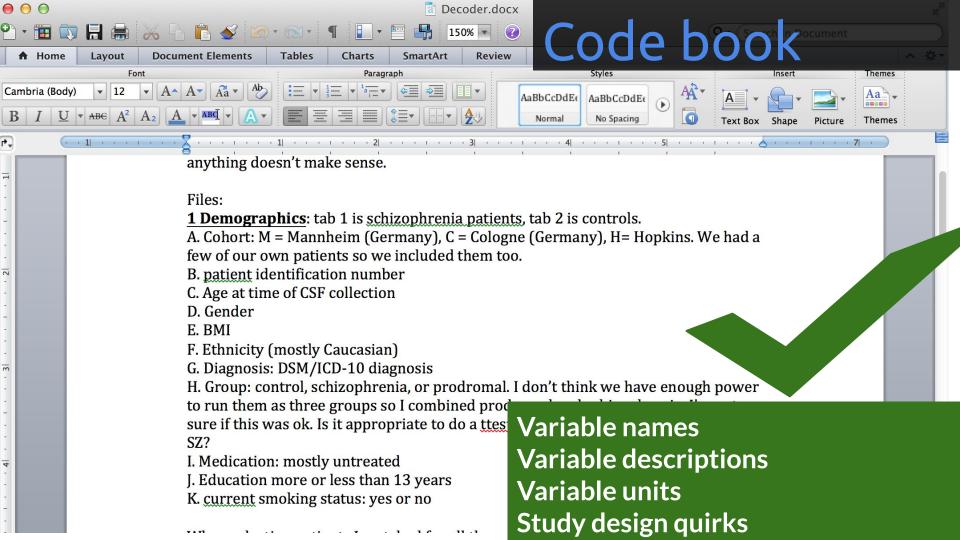
#### Journal of Statistical Software

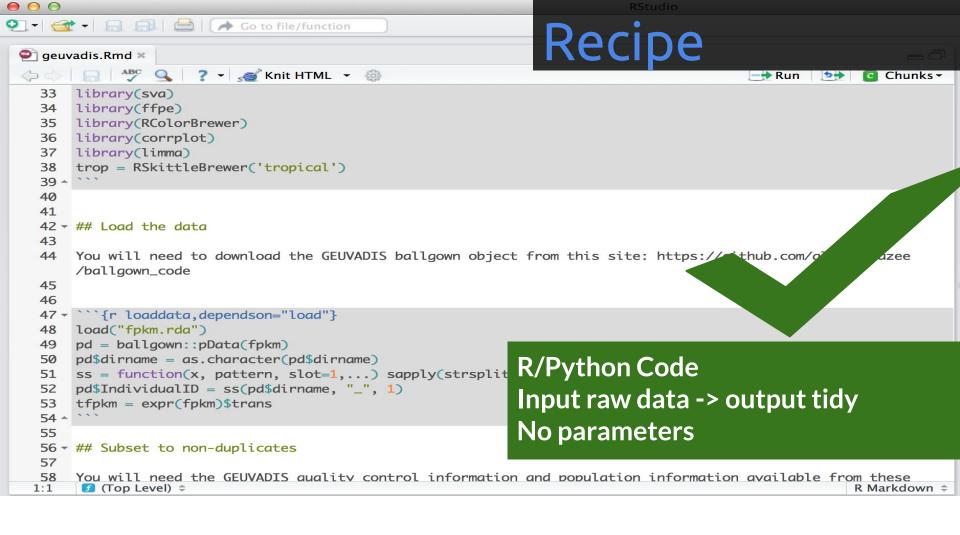
MMMMMM YYYY, Volume VV, Issue II.

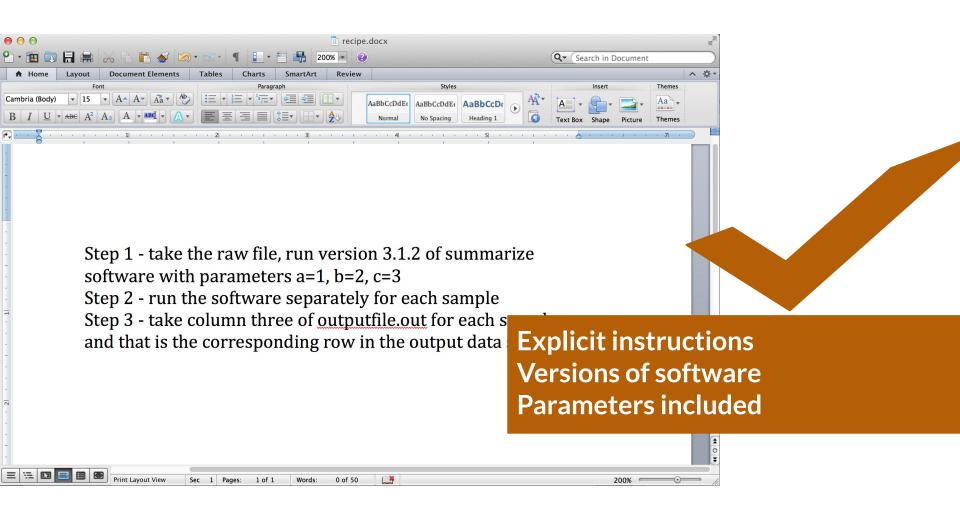
http://www.jstatsoft.org/

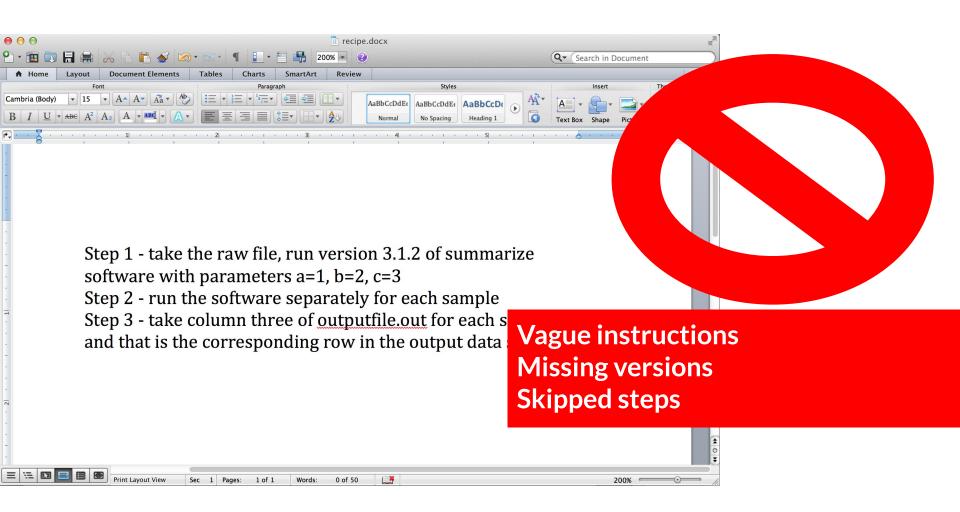
#### Tidy Data


Hadley Wickham RStudio





https://twitter.com/hadleywickham


#### Abstract


A huge amount of effort is spent cleaning data to get it ready for analysis, but there has been little research on how to make data cleaning as easy and effective as possible. This paper tackles a small, but important, component of data cleaning: data tidying. Tidy datasets are easy to manipulate, model and visualise, and have a specific structure: each variable is a column, each observation is a row, and each type of observational unit is a table. This framework makes it easy to tidy messy datasets because only a small set of tools are needed to deal with a wide range of un-tidy datasets. This structure also makes it easier to develop tidy tools for data analysis, tools that both input and output tidy datasets. The advantages of a consistent data structure and matching tools are demonstrated with a case study free from mundane data manipulation chores.











| Avoid spacing in column headers                                                                                                                       | `AgeAtDiagnosis`                                                                | `Age At Diagnosis`                                          | Spacing in variable names makes the analyst's life more difficult                                                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Use consistent capitalization                                                                                                                         | `AgeAtDiagnosis`                                                                | Using both<br>`AgeAtDiagnosis` and<br>`ageatdiagnosis`      | Using consistent column names across tables/spreadsheets simplifies any merging the statistician may have to do.                                                                  |  |  |  |
| Avoid using separators, bu<br>if it's necessary, use an<br>underscore (`_`)                                                                           | ut `IGF1` (or `IGF_1`)                                                          | `IGF.1`,`IGF-1`,`IGF/1`,<br>`IGF,1`                         | Separators (commas, periods, hyphens, slashes, spaces etc.) often have different meanings in coding languages than they do in text. Avoiding them avoids error.                   |  |  |  |
| Avoid unnecessary spaces                                                                                                                              | s 'male'                                                                        | 'male'                                                      | That extra space after 'male' makes it different from 'male' without a space.                                                                                                     |  |  |  |
| Be consistent!                                                                                                                                        | 'male'                                                                          | 'Male',`male', and 'M',                                     | In the eyes of the statistician, 'Male', `male', and 'M' could be incorrectly perceived as three different values.                                                                |  |  |  |
| Be careful of spelling erro                                                                                                                           | rs 'male'                                                                       | 'maale'                                                     | That extra 'a' makes these two different categories.                                                                                                                              |  |  |  |
| Use ISO 8601 coding                                                                                                                                   | 'YYYY-MM-DD'                                                                    | 'MM/DD/YY` and `Month<br>Day, Year`                         | Consistency simplifies the analyst's life, and YYYY-MM-DD will not be misconstrued if opened in Excel.                                                                            |  |  |  |
| Not leave any cells blank<br>and use a consistent value                                                                                               | 'NA'<br>e                                                                       | '0', '-9', red-highlighted<br>blank cells, '. ', ' '-',     | Each cell should be filled with a consistent value. Pick a way to denote missingness (ideally 'NA') and stick with it. Avoid using numbers or punctuation to denote missing data. |  |  |  |
| Stick to text and numbers                                                                                                                             | Convey all information with direct text/numerical entry                         | Using cell highlighting or font color to convey information | Your analyst may not use the same platform for analysis as you used for data entry, so avoiding font color and cell highlighting will minimize issues.                            |  |  |  |
| Save the data in an appropriate format                                                                                                                | Use one worksheet per table and save as CSV or text files                       | Multiple worksheets                                         | Statisticians require this format to import your data onto other platforms.                                                                                                       |  |  |  |
| Avoid entering unnecessa lines of text at the start                                                                                                   | ry Start your first row with<br>variable names                                  | Adding lines of text                                        | This violates the rules of tidy data and makes processing more difficult. Include this information in the "Code book" instead.                                                    |  |  |  |
| Know and avoid its pitfalls                                                                                                                           | S Consistently include one value per cell and be careful of date and time data. | Using macros, splitting cells, and merging cells            | These formats are not amenable to data analysis on other platforms.                                                                                                               |  |  |  |
| Ellis SE, Leek JT. (2017) How to share data for collaboration. <i>PeerJ Preprints</i> 5:e3139v5 <u>https://doi.org/10.7287/peerj.preprints.3139v5</u> |                                                                                 |                                                             |                                                                                                                                                                                   |  |  |  |

Avoid this...

`ADx`

Why?

`ADx` is an unclear and uninformative abbreviation

So Do this...

`AgeAtDiagnosis`

When..

Naming variables

column headers)

Naming variables

Naming variables

Naming variables

Coding variables

Coding variables

Coding variables

Coding date and time

Coding missing data

Generating an Excel

Opening files in Excel

**Entering data** 

**Entering Data** 

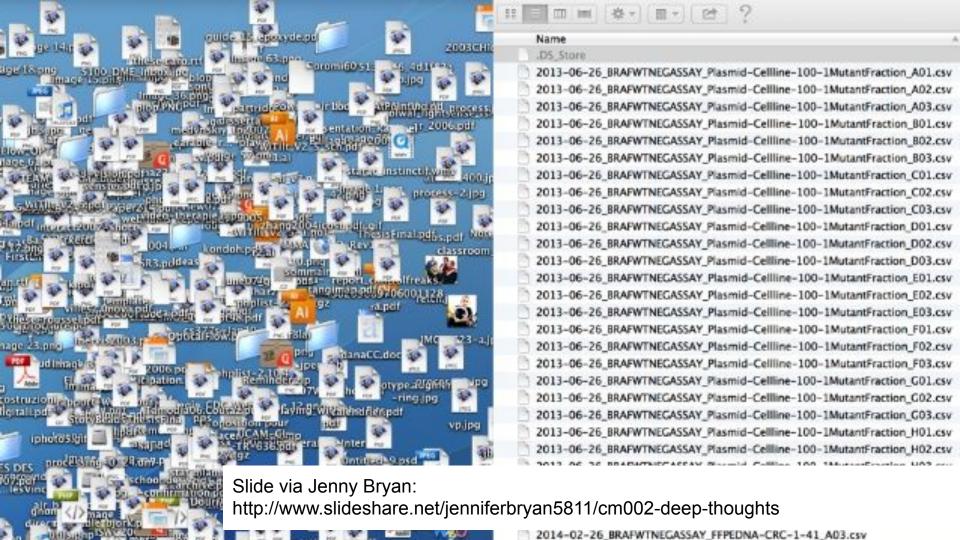
(aka assigning

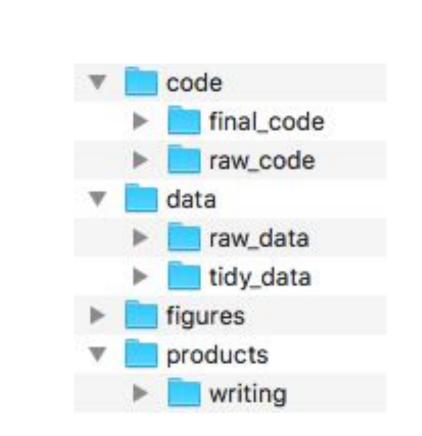
Be sure to...

names

Use meaningful variable

## Rules for Tidy Spreadsheets

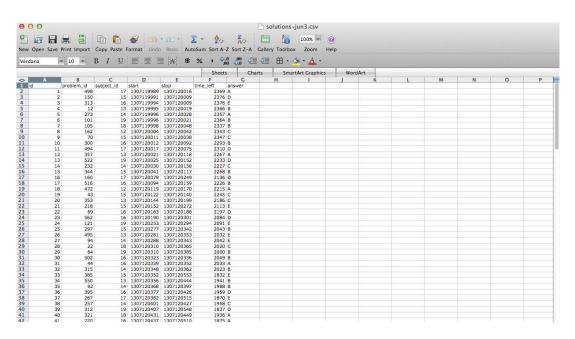

- 1. Be consistent
- 2. Choose good names for things
- 3. Write dates as YYYY-MM-DD
- 4. No empty cells
- 5. Put just one thing in a cell
- 6. Don't use font color or highlighting as data
- 7. Save the data as plain text files


# Organize thyself

"File organization and naming are powerful weapons against chaos."

- Jenny Bryan








#### Raw data

----- ALLERGIES ---------- MEDICATION HISTORY ----ast Updated: 01 Dec 2011 @ 0851 Last Updated: 11 Apr 2011 @ 1737 Medication: AMLODIPINE BESYLATE 10MG TAB llergy Name: TRIMETHOPRIM Instructions: TAKE ONE TABLET BY MOUTH TAKE ONE-HALF TABLET FOR ocation: DAYT29 GRAPEFRUIT JUICE -ate Entered: 09 Mar 2011 Status: Active eaction: Refills Remaining: 3 llergy Type: DRUG Last Filled On: 20 Aug 2010 A Drug Class: ANTI-INFECTIVES, OTHER Initially Ordered On: 13 Aug 2010 bserved/Historical: HISTORICAL Quantity: 45 omments: The reaction to this allergy was MILD (NO SQUELAE) Days Supply: 90 Pharmacy: DAYTON llergy Name: TRAMADOL Prescription Number: 2718953 ocation: DAYT29 ate Entered: 09 Mar 2011 Medication: IBUPROFEN 600MG TAB eactions URINARY RETENTION Instructions: TAKE ONE TABLET BY MOUTH FOUR TIMES A DAY WITH FOOE Status: Active llergy Type: DRUG A Drug Class: NON-OPIOID ANALGESICS Refills Remaining: 3 bserved/Historical: HISTORICAL Last Filled On: 20 Aug 2010 gradually worsening difficulty emptying bladder Initially Ordered On: 01 Jul 2010 m. Annual of the contract of the contract of the contract of 

#### Processed data



- Processed data should be named so it is easy to see which script generated the data.
- The processing script processed data mapping should occur in the README
- Processed data should be tidy

#### Raw scripts

```
2 raw_cheung_analysis.R ×
      Run Source -
 1 library(chron)
 2 library(affy)
 3 library(oligoClasses)
 4 celfiles <- list.celfiles("~/Projects/batchreview/".listGzipped=T)
 5 dts <- sapply(celfiles,celfileDate)</pre>
 7 ll <- strsplit(dts,"-")
 9 yy <- as.numeric(lapply(ll,function(x){x[1]}))</pre>
 10 mm <- as.numeric(lapply(ll,function(x){x[2]}))</pre>
11 dd <- as.numeric(lapply(ll,function(x){x[3]}))</pre>
 13 jul <- julian(mm,dd,yy)
 15 # Identify the arrays corresponding to CEU parents
 16 ceuparents <-scan("~/Documents/Work/workingpapers/CHEUNG/CEU_parents.txt",what="character")
 17 tmp <- list.files("~/Documents/Work/workingpapers/CHEUNG/CEU_data")
 19 rep <- rep(c(0,1), each=100)
20 - for(i in 1:length(ceuparents)){
22 }
 23
24
25 tmp <- tmp[9:272]
 26 array <- as.character(sapply(strsplit(tmp,"_"),function(x){x[1]}))</pre>
 27 sample <- as.character(sapply(strsplit(tmp,c("_")),function(x){x[2]}))</pre>
 28 sample <- as.character(sapply(strsplit(sample,c("\\.")),function(x){x[1]}))</pre>
 29 rp <- as.character(sapply(strsplit(tmp,"_"),function(x){x[3]}))</pre>
    rp <- as.character(sapply(strsplit(rp,c("\\.")),function(x){x[1]}))</pre>
33 ceufiles <- array[sample %in% ceuparents]
```

- May be less commented (but comments help you!)
- May be multiple versions
- May include analyses that are later discarded

### Final scripts

```
index.Rmd × cheung.R ×
   Source on Save Q / →
                                                                    Run Source -
  1 - f.pvalue <- function(dat,mod,mod0){</pre>
       # This is a function for performing
        # parametric f-tests on the data matrix
        # dat comparing the null model mod0
        # to the alternative model mod.
        n \leftarrow dim(dat)[2]
        m <- dim(dat)[1]
        df1 \leftarrow dim(mod)[2]
        df0 <- dim(mod0)[2]
       p \leftarrow rep(0,m)
       Id <- diag(n)
 12
 13
       resid <- dat %*% (Id - mod %*% solve(t(mod) %*% mod) %*% t(mod))
        resid0 <- dat %*% (Id - mod0 %*% solve(t(mod0) %*% mod0) %*% t(mod0))
 14
 15
 16
       rss1 <- resid^2 %*% rep(1,n)
 17
       rss0 <- resid0^2 %*% rep(1,n)
 18
 19
       fstats <- ((rss0 - rss1)/(df1-df0))/(rss1/(n-df1))
       p \leftarrow 1-pf(fstats,df1=(df1-df0),df2=(n-df1))
 21
       return(p)
 22
 23
 24 setwd("cheung/")
  25 # Load data and create group variable
 26 dat <- read.table("full.data")
     jpt.names <- scan("JPT.cname.txt",what="character")</pre>
  29 chb.names <- scan("CHB.cname.txt", what="character")</pre>
  30 ceu.names <- scan("CEU_parents.txt", what="character")</pre>
  31 nceu <- length(ceu.names)
  32 njpt <- length(jpt.names)</pre>
 33 nchb <- length(chb.names)
1:1 f.pvalue 4
```

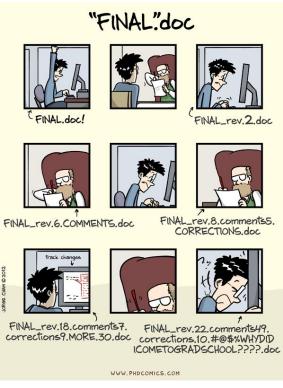
- Clearly commented
  - Small comments liberally what, when, why, how
  - Bigger commented blocks for whole sections
- Include processing details
- Only analyses that appear in the final write-up

#### This is the README file for my\_first\_project

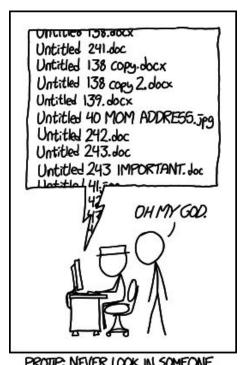
Last updated: 02-Mar-2018

The folders in this project are:

- · data is the folder where you can find all the collected data.
- figures is where you can find all the plots, data pictures, and other images.
- code is where you can find code files for collecting, cleaning up, or analyzing data.
- products is where you can find reports, presentations, or products


Data on crime is obtained from International Crime Data collected between 2015-2018 and is publicly available. Data on happiness is collected from the Survey of International Happiness.

#### Contributors:


- Jane Everyday Doe, jane.everyday.doe@gmail.com
- John Everyday Doe, john.everyday.doe@gmail.com

Cite: Doe, J, and Doe, J, Sample Analysis Using Sample Data, Working Paper, 2018

#### Just no



http://www.phdcomics.com/comics/archive.php?comicid=1531



PROTIP: NEVER LOOK IN SOMEONE. ELSE'S DOCUMENTS FOLDER.

https://xkcd.com/1459/

# key principles of file naming for data science projects:

- Machine readable
- Human readable
- Be nicely ordered

| Bad Naming                | Good Naming                  |  |
|---------------------------|------------------------------|--|
| 2013 my report.md         | 2013_my_report.md            |  |
| malik's_report.md         | maliks_report.md             |  |
| 01_zoë_report.md          | 01_zoe_report.md             |  |
| AdamHooverReport.md       | adam-hoover-report.md        |  |
| executivereportpepsiv1.md | executive_report_pepsi_v1.md |  |

2018\_jan\_sales\_cust001\_prod001.md 2017\_mar\_sales\_cust001\_prod001.md 2016\_may\_sales\_cust001\_prod008.md 2017\_jan\_sales\_cust120\_prod007.md 2015\_oct\_sales\_cust034\_prod001.md 2015\_oct\_sales\_cust034\_prod002.md

| Year | Month | Туре  | Customer ID | Product ID |
|------|-------|-------|-------------|------------|
| 2018 | jan   | sales | 001         | 001        |
| 2017 | mar   | sales | 001         | 001        |
| 2016 | may   | sales | 001         | 008        |
| 2017 | jan   | sales | 120         | 007        |
| 2015 | oct   | sales | 034         | 001        |
| 2015 | oct   | sales | 034         | 002        |

#### Which one is better?

analysis.R or 2017-exploratory\_analysis\_crime.R?

#### Which one is better?

05-21-2017-analysis-cust001.R or 2017-05-21-analysis-cust001.R?

#### Structure of a filename

processed\_pvalue\_data\_from\_pubmed\_oct24.rda

#### What did I do to this data

processed\_pvalue\_data\_from\_pubmed\_oct24.rda

## What kind of data is this?

Where did it come from?

## When did I get it?

## Underscores/slashes not dots/whitespace

## Consistency is the main rule

processed\_pvalue\_data\_from\_pubmed\_oct24.rda raw\_pvalue\_data\_from\_pubmed\_oct24.rda

# Your closest collaborator is you six months ago, but you don't reply to emails

- Karl Broman

http://kbroman.org/Tools4RR/assets/lectures/06 org eda.pdf

Step 1: slow down and document.

Step 2: have sympathy for your future self.

Step 3: have a system.

- Karl Broman

http://kbroman.org/Tools4RR/assets/lectures/06\_org\_eda.pdf

## R + RStudio



[Home]

**Download** 

CRAN

R Project

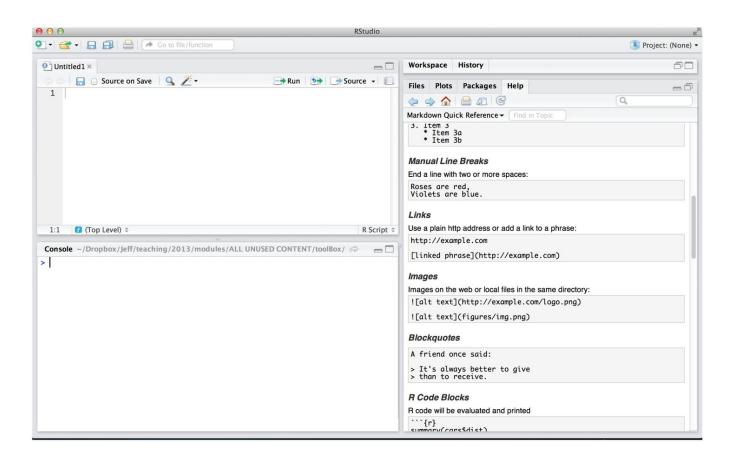
About R Contributors What's New? Mailing Lists Bug Tracking Conferences Search

**R** Foundation

Foundation Board Members Donors Donate

## The R Project for Statistical Computing

## **Getting Started**


R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

## News

- The R Journal Volume 7/1 is available.
- R version 3.2.1 (World-Famous Astronaut) has been released on 2015-06-18.
- R version 3.1.3 (Smooth Sidewalk) has been released on 2015-03-09.
- useR! 2015, will take place at the University of Aalborg, Denmark, June 30 July 3, 2015.
- useR! 2014, took place at the University of California, Los Angeles, USA June 30 July 3, 2014.













## Welcome to AnVIL

The NHGRI AnVIL (Genomic Data Science Analysis, Visualization, and Informatics Lab-space) is a project powered by Terra for biomedical researchers to **access data**, **run analysis tools**, and **collaborate**.

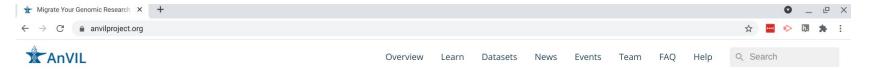
Find how-to's, documentation, video tutorials, and discussion forums 🗹

### View Workspaces

Workspaces connect your data to popular analysis tools powered by the cloud. Use Workspaces to share data, code, and results

### **View Examples**

Browse our gallery of showcase Workspaces to see how science gets done.


## **Browse Data**

Access data from a rich ecosystem of data portals.



https://anvilterra.hio/# bilv and securely.

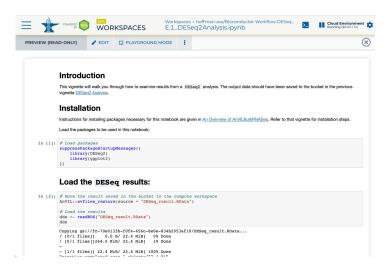
What is AnVIL???



## Migrate Your Genomic Research to the Cloud

Analyze large, open & controlled-access genomic datasets with familiar tools and reproducible workflows in a secure cloud-based computing environment.




This website uses cookies for security and analytics purposes. By using this site, you agree to these uses. Learn more here.

## AnVIL is "renting computers"



## **Standard Computing**

- You buy a laptop one time
- You get that one laptop
- You pay little per use



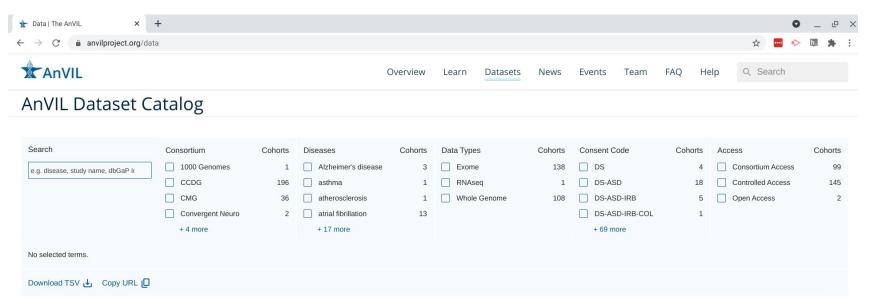
## Cloud computing

- You use any web browser
- You rent the computers
- You pay per hour/gigabyte/etc.

## It can feel a little weird

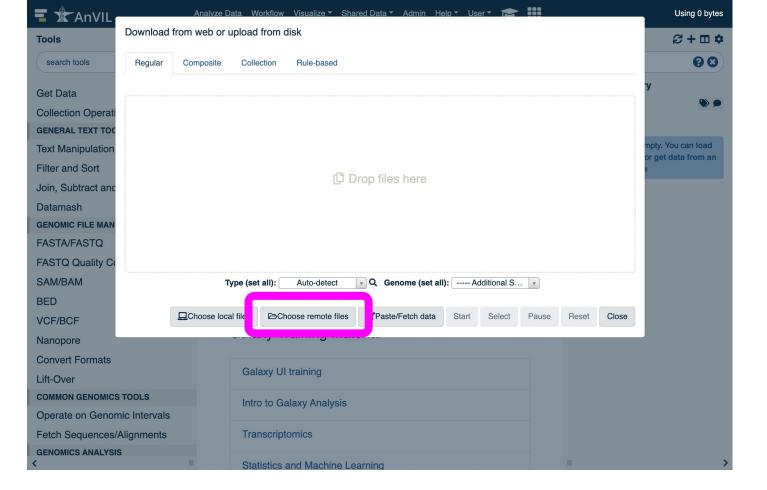


## Purchased car


- You buy the car
- You fill up at a station
- You pay less per mile



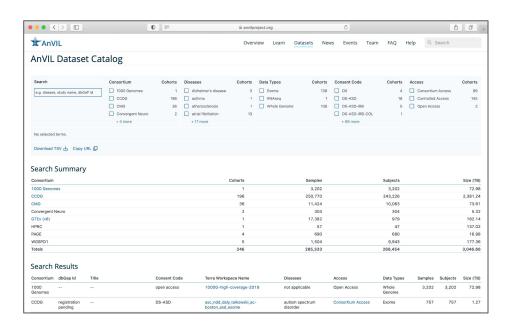
## **ZipCar**


- You don't buy the car
- You pay by the mile
- You may pay more per mile

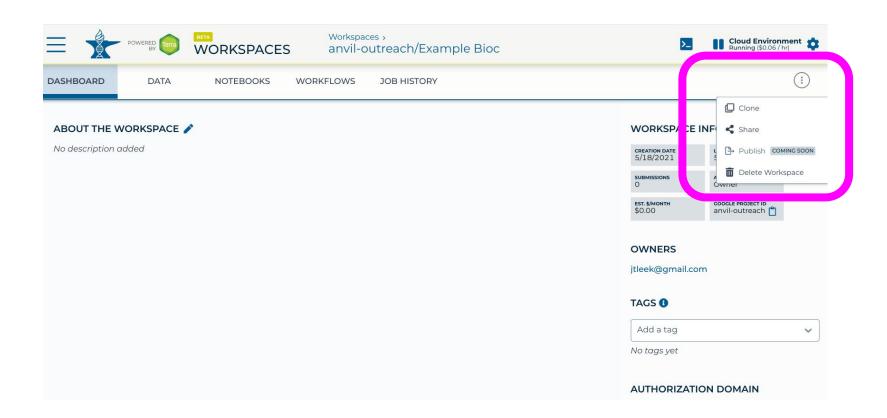
## AnVIL: Data + Sharing + Platforms



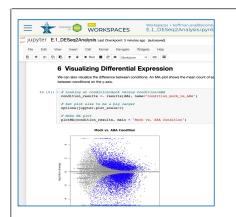
## Search Summary


| Consortium       | Cohorts | Samples | Subjects | Size (TB) |
|------------------|---------|---------|----------|-----------|
| 1000 Genomes     | 1       | 3,202   | 3,202    | 72.98     |
| CCDG             | 196     | 250,770 | 243,226  | 2,381.24  |
| CMG              | 36      | 11,424  | 10,063   | 73.61     |
| Convergent Neuro | 2       | 304     | 304      | 5.32      |
| CTEV (40)        | 1       | 17 202  | 070      | 102 14    |




## AnVIL Data Dashboard

Extensive unrestricted and protected data sets already available within AnVIL


- 246 cohorts (CCDG, CMG, GTEx,1000G, eMerge)
- 285k subjects
- 3Pb and rapidly growing
- Open access (e.g. 1000G), dbGaP authenticated (e.g. GTex) and consortium authenticated (e.g. CCDG) options available

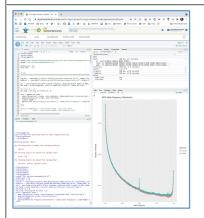


https://anvilproject.org/data



## AnVIL Analysis Platforms






- + Code, text and plots in one document
- + Supports coding in Python or R
- Least scalable, not a complete IDE

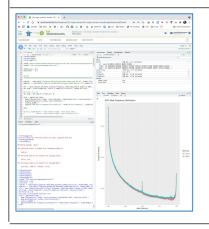




- + Graphical interface for thousands of tools and workflows
- + Highly accessible and reproducible
- Tools must be preconfigured to use






- + Feature rich IDE for programming in R
- + Rich statistics & ML and visualizations
- Limited support for other programming languages

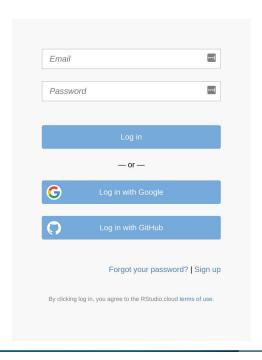




- + Extremely scalable and flexible
- Most technically demanding
- Unpredictable and potentially large costs

## AnVIL Analysis Platforms






- + Feature rich IDE for programming in R
- + Rich statistics & ML and visualizations
- Limited support for other programming languages







