
Data I/O + Structure
Data Wrangling in R

Data Input

Outline

Part 0: A little bit of set up!

Part 1: reading in manually (point and click)

Part 2: reading in directly & working directories

Part 3: checking data & multiple file formats

·

·

·

·

3/27

Data Input: readr

read_delim() and read_csv() from the readr package

example for character delimited:
read_delim(file = "file.txt", delim = "\t")

comma delimited:
read_csv("file.csv")

4/27

Data Input

The filename is the path to your file, in quotes

The function will look in your “working directory” if no absolute file path is
given

Note that the filename can also be a path to a file on a website
(e.g. ‘www.someurl.com/table1.txt’)

·

·

·

5/27

Example

https://sisbid.github.io/Data-Wrangling/data/ufo/ufo_data_complete.csv

(Warning message: One or more parsing issues, call 'problems()' –
more on this later)

From URL
ufo <- read_csv(
 "https://sisbid.github.io/Data-Wrangling/data/ufo/ufo_data_complete.csv"
)

From your 'data-wrangling' directory
ufo <- read_csv("ufo_data_complete.csv")

6/27

https://sisbid.github.io/Data-Wrangling/data/ufo/ufo_data_complete.csv

Data Input

The read_delim() and related functions return a “tibble” is a data.frame with
special printing, which is the primary data format for most data cleaning and
analyses.

Check to make sure you see the new object in the Environment pane.

class(ufo)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

7/27

Data Input

There are also data importing functions provided in base R (rather than the
readr package), like read.delim and read.csv.

These functions have slightly different syntax for reading in data, like header and
as.is.

However, while many online resources use the base R tools, recent versions of
RStudio switched to use these new readr data import tools, so we will use them
here. They are also up to two times faster for reading in large datasets, and have
a progress bar which is nice.

8/27

Data Input: readr

read_table() from the readr package, allows any number of whitespace
characters between columns, and the lines can be of different lengths.

example for whitespace delimited :
read_table(file = "file.txt")

9/27

Clean the data while you read it in!

The argument trim_ws removes trailing and leading spaces around your data.

example:
read_csv(file = "file.txt", trim_ws = TRUE)

10/27

Data Input - working directories

What if your file is in the “Home” directory?

11/27

Data Input

Backtrack using the relative path with ../ like:

ufo <- read_csv("../ufo_data_complete.csv.gz")

12/27

Data Input

Or, read in from a subfolder:

ufo <- read_csv("data/ufo/ufo_data_complete.csv")

Warning: One or more parsing issues, call `problems()` on your data frame for
 dat <- vroom(...)
 problems(dat)

Rows: 88875 Columns: 11
── Column specification ──
Delimiter: ","
chr (10): datetime, city, state, country, shape, duration (hours/min), comme.
dbl (1): duration (seconds)

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this messa

13/27

Check the data + other formats

Check the data out

Some functions to look at a data frame:·

head() shows first few rows

tail() shows the last few rows

View() shows the data as a spreadsheet

spec() gives specification of column types

str() gives the column types and specs

glimpse() similar to str (dplyr package)

-

-

-

-

-

-

15/27

What did I just read in?

nrow() displays the number of rows of a data frame

ncol() displays the number of columns

dim() displays a vector of length 2: # rows, # columns

·

·

·

nrow(ufo)

[1] 88875

ncol(ufo)

[1] 11

dim(ufo)

[1] 88875 11

16/27

All Column Names

colnames() displays the column names·

colnames(ufo)

 [1] "datetime" "city" "state"
 [4] "country" "shape" "duration (seconds)"
 [7] "duration (hours/min)" "comments" "date posted"
[10] "latitude" "longitude"

17/27

Column names and classes using glimpse()

glimpse(ufo)

Rows: 88,875
Columns: 11
$ datetime <chr> "10/10/1949 20:30", "10/10/1949 21:00", "10/10/
$ city <chr> "san marcos", "lackland afb", "chester (uk/engl
$ state <chr> "tx", "tx", NA, "tx", "hi", "tn", NA, "ct", "al
$ country <chr> "us", NA, "gb", "us", "us", "us", "gb", "us", "
$ shape <chr> "cylinder", "light", "circle", "circle", "light
$ `duration (seconds)` <dbl> 2700, 7200, 20, 20, 900, 300, 180, 1200, 180, 1
$ `duration (hours/min)` <chr> "45 minutes", "1-2 hrs", "20 seconds", "1/2 hou
$ comments <chr> "This event took place in early fall around 194
$ `date posted` <chr> "4/27/2004", "12/16/2005", "1/21/2008", "1/17/2
$ latitude <chr> "29.8830556", "29.38421", "53.2", "28.9783333",
$ longitude <chr> "-97.9411111", "-98.581082", "-2.916667", "-96

18/27

Data Input

Sometimes you get weird messages when reading in data.

The problems()` function shows you any issues with the data read-in.

·

·

head(problems(ufo))

A tibble: 6 × 5
 row col expected actual file
 <int> <int> <chr> <chr> <chr>
1 878 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang
2 1713 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang
3 1815 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang
4 2858 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang
5 3734 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang
6 4756 12 11 columns 12 columns /Users/avahoffman/Dropbox/JHSPH/Data-Wrang

dim(problems(ufo))

[1] 199 5

19/27

Data input: other file types

For reading Excel files, you can do one of:

haven package has functions to read SAS, SPSS, Stata formats

·

use read_excel() function from readxl package

use other packages: xlsx, openxlsx

-

-

·

20/27

Selecting Excel sheets

Use the sheet argument to indicate which sheet to pull from. It can refer to the
sheet’s index or name.

example:
read_excel(path = "file.xlsx", sheet = 2)
read_excel(path = "file.xlsx", sheet = "data")

21/27

After hours of cleaning… output!

Data Output

While its nice to be able to read in a variety of data formats, it’s equally
important to be able to output data somewhere.

write_delim(): Write a data frame to a delimited file write_csv(): Write a
data frame to a comma-delimited file

This is about twice as fast as write.csv(), and never writes row names.

23/27

Data Output

For example, we can write back out just the first 100 lines of the ufo dataset:

first_100 <- ufo[1:100,]
write_delim(first_100, file = "ufo_first100.csv", delim = ",")
write_csv(first_100, file = "ufo_first100.csv")

24/27

More ways to save: write_rds

If you want to save one object, you can use readr::write_rds to save to a
compressed rds file:

Read it back in:

Tip: the compress = "xz" argument saves on file size!

write_rds(ufo, file = "ufo_dataset.rds", compress = "xz")

ufo_new <- read_rds(file = "ufo_dataset.rds")

25/27

More ways to save: save

The save command can save a set of R objects into an “R data file”, with the
extension .rda or .RData.

The opposite of save is load.

x = 5
save(ufo, x, file = "ufo_data.rda")

load(file = "ufo_data.rda")

26/27

Summary & Lab

https://sisbid.github.io/Data-Wrangling/02_Data_IO/lab/data-io-lab-part2.Rmd

Use read_delim(), read_csv(), read_table() for common data types

These have helpful trim_ws and na arguments!

read_excel() has the sheet argument for reading from different sheets of
the Excel file

Many functions like str(), View(), and glimpse() can help you understand
your data better

Save your data with write_delim() and write_csv()

·

·

·

·

·

27/27

https://sisbid.github.io/Data-Wrangling/02_Data_IO/lab/data-io-lab-part2.Rmd

