Data Cleaning Part 2

Data Wrangling in R

Data Cleaning Part 2

Example of Cleaning: more complicated

For example, let's say we have a variable about treatment or control conditions
coded as treatment, T, treat, Treat, C, Cont, cont, cOnt, Control, and control.
Using Excel to find all of these would be a matter of filtering and changing all by

hand or using if statements.

Sometimes though, it's not so simple. That's where functions that find patterns
come to be very useful.

3/33

Take a look at the data

count(data_gen, status)

A tibble: 11 x 2

R

RPoOoWOWOONOULIAWNE

status
<chr>

C

Cont
Control
T

Traet
Treat
cOnt
cont
control
treat
treatment

n

<int>

81
90
91
91
105
100
79
83
98
86
96

4/33

Example of Cleaning: more complicated

In R, you could use case_when():

#case_when way:
data_gen <-data_gen %% mutate(status =
case_when(status
%in%s c("C", "cont", "cOnt", "Cont", "control", "Control")
~ "Control",
.default = status))
count(data_gen, status)

A tibble: 6 x 2

status n

<chr> <int>
1 Control 522
2 T 91
3 Traet 105
4 Treat 100
5 treat 36
6 treatment 96

Oh dear! This only fixes some values! It is difficult to notice values like "Traet".

5/33

String functions

The stringr package

Like dplyr, the stringr package:

Makes some things more intuitive

Is different than base R

Is used on forums for answers

Has a standard format for most functions: str_

- the first argument is a string like first argument is a data. frame in dplyr

7/33

Useful String Functions

Useful String functions from base R and stringr
- toupper(), tolower() - uppercase or lowercase your data
str_sentence() - uppercase just the first character (in the stringr package)
paste() - paste strings together with a space
paste - paste strings together with no space as default
str_trim() (in the stringr package) or trimws in base

- will trim whitespace

nchar - get the number of characters in a string

8/33

recoding with str_to_sentence()

#case_when way:

data_gen <—-data_gen %>%
mutate(status
count(data_gen, status)

A tibble: 5 x 2

status n
<chr> <int>
1 Control 522
2 T 91
3 Traet 105
4 Treat 186

5 Treatment 96

str_to_sentence(status))

9/33

recoding with str_to_sentence()

#case_when way:
data_gen <—-data_gen %>%
mutate(status = str_to_sentence(status)) %>%
mutate(status =
case_when(status %in%
c("Treatment", "T", "Treat", "Traet", "Treat")
~ "Treatment",
.default = status))
count(data_gen, status)

A tibble: 2 x 2
status n
<chr> <int>

1 Control 522

2 Treatment 478

OK, now we are getting somewhere!

10/33

Reading in again

Now we have a chance to keep but clean these values!

ufo <—-read_csv(
"https://sisbid. ithub.io/Data—Wran?ling/data/ufo/ufo_data_complete.csv",
col_types = cols(duration (seconds) = "c"))

Warning: One or more parsing issues, call “problems() on your data frame for
dat <- vroom(...)
problems(dat)

11/33

Clean names with the clean_names () function from the janitor

package

colnames(ufo)
[1] "datetime" "city"
[4] "country" "shape"

[7] "duration (hours/min)" "comments"

[10] "latitude" "longitude"

ufo_clean <- clean_names(ufo)
colnames(ufo_clean)

[1] "datetime" "city"

[4] "country" "'shape"

[7] "duration_hours_min" "comments"
[10] "latitude" "longitude"

"'state"
"duration (seconds)
""date posted"

"state"
"duration_seconds"
"date_posted"

12/33

str detect and filter

Now let's fix our ufo data and remove those pesky backticks in the
duration_seconds variable. First let's find them with str_detect.

ufo_clean %%
filter(str_detect(
string = duration_seconds,
pattern = """))

A tibble: 3 x 11

datetime city state country shape duration_seconds duration_hours_]
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2/2/2000 19:33 bouse az us NA> 2 each a few secol
2 4/10/2005 22:52 santa.. ca us <NA> 8 eight seconds
3 7/21/2006 13:00 ibagu.. NA> <NA> circ.. 0.5 1/2 segundo

i 4 more variables: comments <chr>, date_posted <chr>, latitude <chr>,
longitude <chr>

13/33

str_remove

ufo_clean <- ufo_clean %%
mutate(duration_seconds =
str_remove(string

pattern

duration_seconds,

II\II))

14/33

Lets also mutate to be as.numeric again

ufo_cl

€an

mutate(duration_seconds

glimpse(ufo_clean)

Rows:
Column
$ date
$ city
stat
coun
shap

$

$

$

$ duratlon seconds

% duration_hours_min
$

$

$

comm

date_posted

lati
long

388,875
s: 11
time

e
try
e

ents

tude
itude

<chr>
<chr>
<chr>
<chr>
<chr>
<db1>
<chr>
<chr>
<chr>
<chr>
<chr>

<— ufo_clean %>%

as.numeric(duration_seconds))

"10/10/1949 20:30", "10/10/1949 21:00", "10/10/195!
"'san marcos", "lackland afb", '"chester (uk/england
"tX", "tX", NA, "tX", "hi", "tn", NA, "Ct", "al",'
"US", NA, "gb", "US", "US", "US", "gb", "US", uusu
“"cylinder", "light", "circle", "circle", "light",
2700, 7200, 20, 20, 900, 300, 180, 1200, 180, 120,
"45 minutes", "1-2 hrs", "20 seconds", "1/2 hour",
"This event took place in early fall around 1949-5i
"4/27/2004", "12/16/2005", "1/21/2008", "1/17/2004'
'"'29.8830556", ''29.38421", '"53.2", "28.9783333", "2
"-97.9411111", '"-98.581082", '"-2.916667", ''—96.645!

15/33

Substringing

stringr

str_sub(x, start, end) - substrings from position start to position end

16/33

Substringing

Examples:

str_sub("I like friesian horses", 8,12)
[1] "fries"

#123456789101112
#I like fries
str_sub(c("Site A", "Site B", "Site C"), 6,6)

[1] IIAII IIBII IICII

17/33

Splitting/Find/Replace and Regular Expressions

+ R can do much more than find exact matches for a whole string
- Like Perl and other languages, it can use regular expressions.
-+ What are regular expressions?

- Ways to search for specific strings

- Can be very complicated or simple

- Highly Useful - think “Find” on steroids

18/33

A bit on Regular Expressions

http://www.regular-expressions.info/reference.html

+ They can use to match a large number of strings in one statement
. matches any single character

-k means repeat as many (even if 0) more times the last character
? makes a pattern optional (i.e. it matches 0 or 1 times)

+ ~ matches start of vector ~a - starts with “a”

$ matches end of vector b$ - ends with “b”

19/33

http://www.regular-expressions.info/reference.html

‘Find’ functions: stringr

str_detect, str_subset, str_replace, and str_replace_all search for
matches to argument pattern within each element of a character vector: they
differ in the format of and amount of detail in the results.

str_detect - returns TRUE if pattern is found

str_subset - returns only the strings where the pattern were detected
str_extract - returns only the pattern that was detected
str_replace - replaces pattern with replacement the first time

str_replace_all- replaces pattern with replacement as many times
matched

20/33

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

ufo_clean %%
filter(str_detect(comments, "two aliens")) %%

head()

A tibble: 2 x 11
datetime city state country shape duration_seconds duration_hours_|
<chr> <chr> <chr> <chr> <chr> <db1l> <chr>

1 10/14/2006 02:00 yuma va us form... 300 5 minutes

2 7/1/2007 23:00 nort.. ct <NA> unkn... 60 1 minute

i 4 more variables: comments <chr>, date_posted <chr>, latitude <chr>,
longitude <chr>

21/33

To Take a look at comments... need to select it first

ufo_clean %%
filter(str_detect(comments, "two aliens")) %%
select(comments)

A tibble: 2 x 1
comments

<chr>
1 ((HOAX??)) two aliens appeared from a bright light to peacefully investiga:

2 Witnessed two aliens walking along baseball field fence.

22/33

‘Find' functions: str_subset() is easier

str_subset() gives the values that match the pattern: (or if we used negate = TRUE it would find the
opposite)

ufo_clean %>% pull(comments) %>%
str_subset("two aliens")

[1] "((HOAX??)) two aliens appeared from a bright light to peacefully investigate the surroundings in the woods"
[2] "Witnessed two aliens walking along baseball field fence."

23/33

Showing difference in str_extract

str_extract extracts just the matched string

ufo_clean %%

mutate(aliens = str_extract(comments, "two aliens")
count(aliens)
A tibble: 2 x 2
aliens n
<chr> <int>
1 two aliens 2
2 <NA> 88873

Look for any comment that starts with “aliens”

ufo_clean %>% pull(comments) %>%str_subset("~aliens")

[1] "aliens speak german???" "aliens exist"

(o) (o)
) %>%

"aliens in srilanka"

24/33

Using Regular Expressions

That contains space then ship maybe with stuff in between

ufo_clean %>% pull(comments) %>%
str_subset("space.?ship") %>% head(4) # gets "spaceship" or "space ship" or...

[1] "I saw the cylinder shaped looked like a spaceship hovring above the east side of the Air Force base. Saw it fo
[2] "description of a spaceship spotted over Birmingham Alabama in 1967."

[3] "A space ship was descending to the ground"

[4] "On Monday october 3, 2005, I spotted two spaceships in the sky. The first spotted ship was what seemed

ufo_clean %>% pull(comments) %>%
str_subset("space.ship") %>% head(4) # no "spaceship" must have character in between

[1] "A space ship was descending to the ground"

[2] "I saw a Silver space ship rising into the early morning sky over Houston, Texas."

[3] "Saw a space ship hanging over the southern (Manzano) portion of the Sandia Mountains on evening. It was bright
[4] "saw space ship for 5 min! Got scared craplessŒŒ#338#338#338#338#338#338#338#338H#338#33Œ#338#3384#

25/33

time information

pull(ufo_clean, duration_hours_min) %% head(n = 20)

[1] "45 minutes" "1-2 hrs" ""20 seconds"
[5] "15 minutes" "5 minutes" ""about 3 mins"
[9] "3 minutes" "several minutes" "5 min."

[13] "30 min." "3 minutes" ""30 seconds"

[17] "2 minutes" '"20-30 min" '"20 sec."

"1/2 hour"
20 minutes
"3 minutes"
"20minutes”
II2 m:i-nll

26/33

str_replace()

Let's say we wanted to make the time information more consistent. Using
case_when() could be very tedious and error-prone!

We can use str_replace() to do so.

ufo_clean %>% mutate(duration_hours_min =
str_replace(string = duration_hours_min,
pattern = "minutes",
replacement ="mins")) %%
pull(duration_hours_min) %>%
head(8)

[1] "45 mins" "1-2 hrs" '""20 seconds" "1/2 hour" "15 mins"
[6] "5 mins" ""about 3 mins" "20 mins"

27/33

Separating columns

Better yet, you might notice that this data isn't tidy- there are more than two
entries for each value - amount of time and unit. We could separate this using
separate() from the tidyr package.

ufo_clean %>% separate(duration_hours_min,
into = c("duration_amount", "duration_unit"),
Sep —n ||) o/o>°/o
select(duration_amount, duration_unit) %>% head()

A tibble: 6 x 2
duration_amount duration_unit

<chr> <chr>
1 45 minutes
2 1-2 hrs
3 20 seconds
4 1/2 hour
5 15 minutes
6 5 minutes

As you can see there is still plenty of cleaning to do!

28/33

more seperating

ufo_clean <- ufo_clean %>% separate(datetime,
into = c("date", "time"),
Sep — 11 II)

ufo_clean %>% select(date, time) %>% head()

A tibble: 6 x 2

date time

<chr> <chr>
10/10/1949 20:30
10/10/1949 21:00
10/10/1955 17:00
10/10/1956 21:00
10/10/1960 20:00
10/10/1961 19:00

OULWNEF

29/33

Dates and times

The [lubridate](https://lubridate.tidyverse.org/) package is amazing for dates. Most important

functions are those that look like ymd or mdy etc. They specify how a date should be interpreted.

library(lubridate)#need to load this one!

ufo_clean <- ufo_clean %>% mutate(date

head(ufo_clean)

A tibble:
date
<date>

1 1949-10-10

2 1949-10-10

3 1955-10-10

4 1956-10-10

5 1960-10-10

6 1961-10-10

#

#

6 x 12

time
<chr>

20
21
17
21
20
19

:30
100
100
100
100
100 .
i 4 more variables: comments <chr>,
longitude <chr>

city

<chr>
san ..
lack..
ches..
edna

kane..
bris.

= mdy(date))

state country shape duration_seconds

<chr> <chr>

tx
tx
<NA>
tx
hi
tn

us
<NA>
gb
us
us
us

<chr>
cyli..
light
circ..
circ..
light
sphe...

<db1l>
2700
7200
20

20
900
300

duration_hours_min
<chr>

45 minutes

1-2 hrs

20 seconds

1/2 hour

15 minutes

5 minutes

date_posted <chr>, latitude <chr>,

30/33

https://lubridate.tidyverse.org/

str *functions

str_detect(string = c("abcdd", "two"), pattern = "dd")
[1] TRUE FALSE
str_subset(string = c("abcdd", "two"), pattern = "dd")

[1] "abcdd"
str_extract(string = c("abcdd", "two"), pattern = "dd")
[1] "dd" NA
str_sub(string = c("abcdd", "two"), start = 1, end = 3)

[1] "abC" "tWO"

31/33

Summary

stringr package has lots of helpful functions that work on vectors or
variables in a data frame

str_detect helps find patterns

str_detect and filter can help you filter data based on patterns within
value

str_extract helps extract a pattern
str_sub extracts pieces of strings based on the position of the the characters
str_subset gives the values that match a pattern
separate can separate columns into two
-~ indicates the start of a string
$ indicates the end of a string
- the lubridate package is useful for dates and times

32/33

Lab

https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-
part2.Rmd

33/33

https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-part2.Rmd
https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-part2.Rmd

