
Data Cleaning Part 2
Data Wrangling in R

Data Cleaning Part 2

Example of Cleaning: more complicated

For example, let’s say we have a variable about treatment or control conditions
coded as treatment, T, treat, Treat, C, Cont, cont, cOnt, Control, and control.
Using Excel to find all of these would be a matter of filtering and changing all by
hand or using if statements.

Sometimes though, it’s not so simple. That’s where functions that find patterns
come to be very useful.

3/33

Take a look at the data

count(data_gen, status)

A tibble: 11 × 2
 status n
 <chr> <int>
 1 C 81
 2 Cont 90
 3 Control 91
 4 T 91
 5 Traet 105
 6 Treat 100
 7 cOnt 79
 8 cont 83
 9 control 98
10 treat 86
11 treatment 96

4/33

Example of Cleaning: more complicated

In R, you could use case_when():

Oh dear! This only fixes some values! It is difficult to notice values like "Traet".

#case_when way:
data_gen <-data_gen %>% mutate(status =
 case_when(status
 %in% c("C", "cont", "cOnt", "Cont", "control", "Control")
 ~ "Control",
 .default = status))
count(data_gen, status)

A tibble: 6 × 2
 status n
 <chr> <int>
1 Control 522
2 T 91
3 Traet 105
4 Treat 100
5 treat 86
6 treatment 96

5/33

String functions

The stringr package

Like dplyr, the stringr package:

Makes some things more intuitive

Is different than base R

Is used on forums for answers

Has a standard format for most functions: str_

·

·

·

·

the first argument is a string like first argument is a data.frame in dplyr-

7/33

Useful String Functions

Useful String functions from base R and stringr

toupper(), tolower() - uppercase or lowercase your data

str_sentence() - uppercase just the first character (in the stringr package)

paste() - paste strings together with a space

paste0 - paste strings together with no space as default

str_trim() (in the stringr package) or trimws in base

nchar - get the number of characters in a string

·

·

·

·

·

will trim whitespace-

·

8/33

recoding with str_to_sentence()

#case_when way:
data_gen <-data_gen %>%
 mutate(status = str_to_sentence(status))
count(data_gen, status)

A tibble: 5 × 2
 status n
 <chr> <int>
1 Control 522
2 T 91
3 Traet 105
4 Treat 186
5 Treatment 96

9/33

recoding with str_to_sentence()

OK, now we are getting somewhere!

#case_when way:
data_gen <-data_gen %>%
 mutate(status = str_to_sentence(status)) %>%
 mutate(status =
 case_when(status %in%
 c("Treatment", "T", "Treat", "Traet", "Treat")
 ~ "Treatment",
 .default = status))
count(data_gen, status)

A tibble: 2 × 2
 status n
 <chr> <int>
1 Control 522
2 Treatment 478

10/33

Reading in again

Now we have a chance to keep but clean these values!

ufo <-read_csv(
 "https://sisbid.github.io/Data-Wrangling/data/ufo/ufo_data_complete.csv",
 col_types = cols(`duration (seconds)` = "c"))

Warning: One or more parsing issues, call `problems()` on your data frame for
 dat <- vroom(...)
 problems(dat)

11/33

Clean names with the clean_names() function from the janitor

package

colnames(ufo)

 [1] "datetime" "city" "state"
 [4] "country" "shape" "duration (seconds)"
 [7] "duration (hours/min)" "comments" "date posted"
[10] "latitude" "longitude"

ufo_clean <- clean_names(ufo)
colnames(ufo_clean)

 [1] "datetime" "city" "state"
 [4] "country" "shape" "duration_seconds"
 [7] "duration_hours_min" "comments" "date_posted"
[10] "latitude" "longitude"

12/33

str_detect and filter

Now let’s fix our ufo data and remove those pesky backticks in the
duration_seconds variable. First let’s find them with str_detect.

ufo_clean %>%
 filter(str_detect(
 string = duration_seconds,
 pattern = "`"))

A tibble: 3 × 11
 datetime city state country shape duration_seconds duration_hours_m
 <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2/2/2000 19:33 bouse az us <NA> 2` each a few secon
2 4/10/2005 22:52 santa… ca us <NA> 8` eight seconds
3 7/21/2006 13:00 ibagu… <NA> <NA> circ… 0.5` 1/2 segundo
ℹ 4 more variables: comments <chr>, date_posted <chr>, latitude <chr>,
longitude <chr>

13/33

str_remove

ufo_clean <- ufo_clean %>%
 mutate(duration_seconds =
 str_remove(string = duration_seconds,
 pattern = "`"))

14/33

Lets also mutate to be as.numeric again

ufo_clean <- ufo_clean %>%
 mutate(duration_seconds = as.numeric(duration_seconds))

glimpse(ufo_clean)

Rows: 88,875
Columns: 11
$ datetime <chr> "10/10/1949 20:30", "10/10/1949 21:00", "10/10/1955
$ city <chr> "san marcos", "lackland afb", "chester (uk/england)
$ state <chr> "tx", "tx", NA, "tx", "hi", "tn", NA, "ct", "al", "
$ country <chr> "us", NA, "gb", "us", "us", "us", "gb", "us", "us",
$ shape <chr> "cylinder", "light", "circle", "circle", "light", "
$ duration_seconds <dbl> 2700, 7200, 20, 20, 900, 300, 180, 1200, 180, 120,
$ duration_hours_min <chr> "45 minutes", "1-2 hrs", "20 seconds", "1/2 hour",
$ comments <chr> "This event took place in early fall around 1949-50
$ date_posted <chr> "4/27/2004", "12/16/2005", "1/21/2008", "1/17/2004"
$ latitude <chr> "29.8830556", "29.38421", "53.2", "28.9783333", "21
$ longitude <chr> "-97.9411111", "-98.581082", "-2.916667", "-96.6458

15/33

Substringing

stringr

str_sub(x, start, end) - substrings from position start to position end·

16/33

Substringing

Examples:

str_sub("I like friesian horses", 8,12)

[1] "fries"

#123456789101112
#I like fries
str_sub(c("Site A", "Site B", "Site C"), 6,6)

[1] "A" "B" "C"

17/33

Splitting/Find/Replace and Regular Expressions

R can do much more than find exact matches for a whole string

Like Perl and other languages, it can use regular expressions.

What are regular expressions?

·

·

·

Ways to search for specific strings

Can be very complicated or simple

Highly Useful - think “Find” on steroids

-

-

-

18/33

A bit on Regular Expressions

http://www.regular-expressions.info/reference.html

They can use to match a large number of strings in one statement

. matches any single character

* means repeat as many (even if 0) more times the last character

? makes a pattern optional (i.e. it matches 0 or 1 times)

^ matches start of vector ^a - starts with “a”

$ matches end of vector b$ - ends with “b”

·

·

·

·

·

·

·

19/33

http://www.regular-expressions.info/reference.html

‘Find’ functions: stringr

str_detect, str_subset, str_replace, and str_replace_all search for
matches to argument pattern within each element of a character vector: they
differ in the format of and amount of detail in the results.

str_detect - returns TRUE if pattern is found

str_subset - returns only the strings where the pattern were detected

str_extract - returns only the pattern that was detected

str_replace - replaces pattern with replacement the first time

str_replace_all - replaces pattern with replacement as many times
matched

·

·

·

·

·

20/33

‘Find’ functions: Finding Indices

These are the indices where the pattern match occurs:

ufo_clean %>%
 filter(str_detect(comments, "two aliens")) %>%
 head()

A tibble: 2 × 11
 datetime city state country shape duration_seconds duration_hours_m
 <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 10/14/2006 02:00 yuma va us form… 300 5 minutes
2 7/1/2007 23:00 nort… ct <NA> unkn… 60 1 minute
ℹ 4 more variables: comments <chr>, date_posted <chr>, latitude <chr>,
longitude <chr>

21/33

To Take a look at comments… need to select it first

ufo_clean %>%
 filter(str_detect(comments, "two aliens")) %>%
 select(comments)

A tibble: 2 × 1
 comments
 <chr>
1 ((HOAX??)) two aliens appeared from a bright light to peacefully investigat
2 Witnessed two aliens walking along baseball field fence.

22/33

‘Find’ functions: str_subset() is easier

str_subset() gives the values that match the pattern: (or if we used negate = TRUE it would find the
opposite)

ufo_clean %>% pull(comments) %>%
 str_subset("two aliens")

[1] "((HOAX??)) two aliens appeared from a bright light to peacefully investigate the surroundings in the woods"
[2] "Witnessed two aliens walking along baseball field fence."

23/33

Showing difference in str_extract

str_extract extracts just the matched string

ufo_clean %>%
 mutate(aliens = str_extract(comments, "two aliens")) %>%
 count(aliens)

A tibble: 2 × 2
 aliens n
 <chr> <int>
1 two aliens 2
2 <NA> 88873

Look for any comment that starts with “aliens”·

ufo_clean %>% pull(comments) %>%str_subset("^aliens")

[1] "aliens speak german???" "aliens exist" "aliens in srilanka"

24/33

Using Regular Expressions

That contains space then ship maybe with stuff in between

ufo_clean %>% pull(comments) %>%
 str_subset("space.?ship") %>% head(4) # gets "spaceship" or "space ship" or...

[1] "I saw the cylinder shaped looked like a spaceship hovring above the east side of the Air Force base. Saw it fo
[2] "description of a spaceship spotted over Birmingham Alabama in 1967."
[3] "A space ship was descending to the ground"
[4] "On Monday october 3, 2005, I spotted two spaceships in the sky. The first spotted ship was what seemed t

ufo_clean %>% pull(comments) %>%
 str_subset("space.ship") %>% head(4) # no "spaceship" must have character in between

[1] "A space ship was descending to the ground"
[2] "I saw a Silver space ship rising into the early morning sky over Houston, Texas."
[3] "Saw a space ship hanging over the southern (Manzano) portion of the Sandia Mountains on evening. It was bright
[4] "saw space ship for 5 min! Got scared crapless!!!!!!!!!!!!!!!

25/33

time information

pull(ufo_clean, duration_hours_min) %>% head(n = 20)

 [1] "45 minutes" "1-2 hrs" "20 seconds" "1/2 hour"
 [5] "15 minutes" "5 minutes" "about 3 mins" "20 minutes"
 [9] "3 minutes" "several minutes" "5 min." "3 minutes"
[13] "30 min." "3 minutes" "30 seconds" "20minutes"
[17] "2 minutes" "20-30 min" "20 sec." "2 min"

26/33

str_replace()

Let’s say we wanted to make the time information more consistent. Using
case_when() could be very tedious and error-prone!

We can use str_replace() to do so.

ufo_clean %>% mutate(duration_hours_min =
 str_replace(string = duration_hours_min,
 pattern = "minutes",
 replacement ="mins")) %>%
 pull(duration_hours_min) %>%
 head(8)

[1] "45 mins" "1-2 hrs" "20 seconds" "1/2 hour" "15 mins"
[6] "5 mins" "about 3 mins" "20 mins"

27/33

Separating columns

Better yet, you might notice that this data isn’t tidy- there are more than two
entries for each value - amount of time and unit. We could separate this using
separate() from the tidyr package.

As you can see there is still plenty of cleaning to do!

ufo_clean %>% separate(duration_hours_min,
 into = c("duration_amount", "duration_unit"),
 sep = " ") %>%
 select(duration_amount, duration_unit) %>% head()

A tibble: 6 × 2
 duration_amount duration_unit
 <chr> <chr>
1 45 minutes
2 1-2 hrs
3 20 seconds
4 1/2 hour
5 15 minutes
6 5 minutes

28/33

more seperating

ufo_clean <- ufo_clean %>% separate(datetime,
 into = c("date", "time"),
 sep = " ")
ufo_clean %>% select(date, time) %>% head()

A tibble: 6 × 2
 date time
 <chr> <chr>
1 10/10/1949 20:30
2 10/10/1949 21:00
3 10/10/1955 17:00
4 10/10/1956 21:00
5 10/10/1960 20:00
6 10/10/1961 19:00

29/33

Dates and times

The [lubridate](https://lubridate.tidyverse.org/) package is amazing for dates. Most important
functions are those that look like ymd or mdy etc. They specify how a date should be interpreted.

library(lubridate)#need to load this one!

ufo_clean <- ufo_clean %>% mutate(date = mdy(date))
head(ufo_clean)

A tibble: 6 × 12
 date time city state country shape duration_seconds duration_hours_min
 <date> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 1949-10-10 20:30 san … tx us cyli… 2700 45 minutes
2 1949-10-10 21:00 lack… tx <NA> light 7200 1-2 hrs
3 1955-10-10 17:00 ches… <NA> gb circ… 20 20 seconds
4 1956-10-10 21:00 edna tx us circ… 20 1/2 hour
5 1960-10-10 20:00 kane… hi us light 900 15 minutes
6 1961-10-10 19:00 bris… tn us sphe… 300 5 minutes
ℹ 4 more variables: comments <chr>, date_posted <chr>, latitude <chr>,
longitude <chr>

30/33

https://lubridate.tidyverse.org/

str_*functions

str_detect(string = c("abcdd", "two"), pattern = "dd")

[1] TRUE FALSE

str_subset(string = c("abcdd", "two"), pattern = "dd")

[1] "abcdd"

str_extract(string = c("abcdd", "two"), pattern = "dd")

[1] "dd" NA

str_sub(string = c("abcdd", "two"), start = 1, end = 3)

[1] "abc" "two"

31/33

Summary

stringr package has lots of helpful functions that work on vectors or
variables in a data frame

str_detect helps find patterns

str_detect and filter can help you filter data based on patterns within
value

str_extract helps extract a pattern

str_sub extracts pieces of strings based on the position of the the characters

str_subset gives the values that match a pattern

separate can separate columns into two

^ indicates the start of a string

$ indicates the end of a string

the lubridate package is useful for dates and times

·

·

·

·

·

·

·

·

·

·

32/33

Lab

https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-
part2.Rmd

33/33

https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-part2.Rmd
https://sisbid.github.io/Data-Wrangling/09_Data_Cleaning/lab/data-cleaning-lab-part2.Rmd

