library(tidyverse)
## ── Attaching core tidyverse packages ────────────────────────────────────────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ──────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readxl)
This lab uses different versions of the iris
dataset.
You can use links or download them to your machine. Copy the code
produced by the dropdown menu into the code chunk. As a reminder the
steps are:
>
File>
Import Dataset>
From Text (readr
)>
paste the url>
click “Update” and “Import”You can see more about this dataset by running ?iris
in
the console.
If this is review to you, explore the “Import Options” on the bottom left of the import dataset menu.
https://sisbid.github.io/Data-Wrangling/data/iris/iris_q1.csv
dataset into the iris_q1
R object. What delimiter separates
columns?iris_q1 <- read_csv("https://sisbid.github.io/Data-Wrangling/data/iris/iris_q1.csv") # Your directory may vary!
## Rows: 150 Columns: 5
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): Species
## dbl (4): Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(iris_q1)
## # A tibble: 6 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
https://sisbid.github.io/Data-Wrangling/data/iris/iris_q2.tsv
dataset into the iris_q2
R object. What delimiter separates
columns?iris_q2 <- read_delim("https://sisbid.github.io/Data-Wrangling/data/iris/iris_q2.tsv",
delim = "\t")
## Rows: 150 Columns: 5
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: "\t"
## chr (1): Species
## dbl (4): Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(iris_q2)
## # A tibble: 6 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
https://sisbid.github.io/Data-Wrangling/data/iris/iris_q3.txt
dataset into the iris_q3
R object. What delimiter separates
columns?iris_q3 <- read_table("https://sisbid.github.io/Data-Wrangling/data/iris/iris_q3.txt")
##
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
## cols(
## Sepal.Length = col_double(),
## Sepal.Width = col_double(),
## Petal.Length = col_double(),
## Petal.Width = col_double(),
## Species = col_character()
## )
head(iris_q3)
## # A tibble: 6 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
https://sisbid.github.io/Data-Wrangling/data/iris/iris_q4.csv
dataset into the iris_q4
R object. What delimiter separates
columns? [hint: file extension is ambiguous]iris_q4 <- read_delim("https://sisbid.github.io/Data-Wrangling/data/iris/iris_q4.csv",
delim = ":", escape_double = FALSE, trim_ws = TRUE)
## Rows: 150 Columns: 5
## ── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ":"
## chr (1): Species
## dbl (4): Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(iris_q4)
## # A tibble: 6 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
https://sisbid.github.io/Data-Wrangling/data/iris/iris_xl.xlsx
dataset into the iris_xl
R object.url <- "https://sisbid.github.io/Data-Wrangling/data/iris/iris_xl.xlsx"
destfile <- "iris_xl.xlsx"
curl::curl_download(url, destfile)
iris_xl <- read_excel(destfile)
head(iris_xl)
## # A tibble: 6 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa